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Abstract. Central to the digital transformation of the process indus-
try are Digital Twins (DTs), virtual replicas of physical manufactur-
ing systems that combine sensor data with sophisticated data-based or
physics-based models, or a combination thereof, to tackle a variety of
industrial-relevant tasks like process monitoring, predictive control or
decision support. The backbone of a DT, i.e. the concrete modelling
methodologies and architectural frameworks supporting these models,
are complex, diverse and evolve fast, necessitating a thorough under-
standing of the latest state-of-the-art methods and trends to stay on top
of a highly competitive market. From a research perspective, despite the
high research interest in reviewing various aspects of DTs, structured lit-
erature reports specifically focusing on unravelling the utilized learning
paradigms (e.g. self-supervised learning) for DT-creation in the process
industry are a novel contribution in this field. This study aims to address
these gaps by (1) systematically analyzing the modelling methodologies
(e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov
Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for
DT-creation; (2) assessing the utilized learning strategies (e.g. super-
vised, unsupervised, self-supervised); (3) analyzing the type of modelling
task (e.g. regression, classification, clustering); and (4) identifying the
challenges and research gaps, as well as, discuss potential resolutions
provided.

Keywords: Digital Twin - Review - Process Industry - Modelling
Methods - Learning Paradigm - Self-Supervised * Transfer-Learning

1 Introduction and Motivation

The number of sensors and the corresponding data produced in the process indus-
try is continuously increasing. This uptrend is part of the Industry 4.0 revolu-
tion, enabling a rich source of sensor data [20], which presents an unprecedented
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opportunity to harness complex sensor data for enhancing operational efficiency.
The rapidly evolving market demands and the urgency for swift decision-making
introduce considerable challenges to industrial manufacturers [37]. Furthermore,
manufacturers within the European Union are obligated to comply with energy
efficiency standards [1], aiming to neutralize the carbon footprint of the pro-
duction facilities till 2050. An intelligently managed and regulated production is
essential to remain competitive and meet efficiency goals.

The strategy of employing Digital Twins is recognized as a key enabler for
this digital shift, aiming to increase competitiveness, productivity, and efficiency
|18]. Rasheed et al. [28| define DT as a “virtual representation of a physical asset
or process enabled through data and simulators for real-time prediction, opti-
mization, monitoring, controlling, and improved decision-making”. Recently, the
evolution of DTs embraced cognitive capabilities, introducing Adaptive, Intelli-
gent, and Cognitive DTs (e.g. [2]), showcasing their progression towards auton-
omy and intelligence.

Tracking concrete modelling methodologies, learning paradigms, and archi-
tectural designs is especially important for the latest concepts, i.e., cognitive
or intelligent DTs, to help researchers and industrial practitioners adopt them
more efficiently. Cognitive DTs aim to achieve elements of cognition, e.g. percep-
tion (i.e. abstracting meaningful data representations for subsequent processing),
attention (i.e. focusing by intent or driven by signals on specific tasks, goals or
data, e.g. focusing on certain aspects of the multi-dimensional and multi-modal
high-volume and high-velocity data produced by Industrial Internet of Things
(IToT) devices), memory (i.e. working memory, episodic memory and semantic
memory), learning (i.e. transforming insights from the physical Twin into gen-
eralizable knowledge for unseen scenarios), or reasoning [23|. Among the learn-
ing paradigms of machine learning models, transfer learning and self-supervised
learning stand out as promising research directions for enabling cognitive DTs in
the process industry. Transfer learning (TL) leverages knowledge, i.e. general rep-
resentations, learned from pre-training on large-scale datasets and applies it to a
target task with limited labelled data. Self-supervised learning does not rely on
labelled data but instead learns the general representations from pre-text tasks
like masked imputation, commonly using encoder-decoder-related structures (see
[35]). Both learning paradigms have shown tremendous success in the natural
language processing domain, where most of the success is traced back to the
paper of Vaswani et al. [33]. The used learning paradigm and modelling method-
ology are promising research directions for DTs in general, but specifically for
the process industry since the data accumulated in such industries is commonly
of high volume, variety, variability and veracity, making manual labelling for
specific use cases (e.g. detecting anomalies, predicting key performance indica-
tors, classifying process states, simulating process behaviour based on different
control inputs, etc.) a time-consuming task for experts and researchers, or even
impossible if the modelled process does not allow for exploring the behaviour
out-of-domain, i.e. experiments outside of the “normal”, business-critical opera-
tion.
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1.1 Research Questions (RQs)

Guided by the preliminary findings of this review, we propose several research
questions aimed at furthering the understanding of modelling methodologies and
learning paradigms of DTs in the industrial sector:

— RQ 1: What are the state-of-the-art modelling methodologies, and how has
their usage evolved? Are Encoder-Decoder architectures on the rise, possibly
signalling the adoption of transformer-like architectures to the industrial DT
domain?

— RQ 2: What are the commonly utilized learning paradigms (i.e. unsuper-
vised, supervised, self-supervised, transfer-learning, etc.)? What is the distri-
bution of data-driven and hybrid modelling approaches? Is the self-supervised
learning paradigm for generating general and transferable knowledge already
explored in the industrial DT domain?

— RQ 3: Are DT research and application studies more focused on the evalu-
ation of classification, clustering tasks (e.g. anomaly detection) or regression
tasks (e.g. forecasting, imputation, etc.)?

1.2 Structure of Review

This review is organized into the following sections to systematically address
the mentioned research questions, starting with the search strategy description,
followed by the review report and detailed analysis of the selected primary stud-
ies. By structuring the review in this manner, we aim to provide a comprehen-
sive overview of the current state of digital twin modelling methodologies and
learning paradigms in the process industry, highlighting innovative practices and
future opportunities for research and application.

— Section 2 - Search Strategy: Details the methodology used to select and
analyze relevant literature, including data sources, selection criteria, and the
procedure for selecting primary studies.

— Section 3 - Reporting the Review: Presents an overview of the studies
included in the review, featuring publication trends and further synthesis
modelling methodologies and learning paradigms based on selected primary
studies.

— Section 4 - Evaluating RQs on Primary Studies: Offers a detailed
analysis of the primary studies, focusing on their contributions to modelling
methodologies, learning paradigms, and the tackled tasks in the context of
the process industry. This section also discusses the challenges identified and
potential solutions.

— Section 5 - Discussion and Conclusion: Synthesizes the review findings,
discusses the implications for industry and academia, identifies current liter-
ature gaps, and proposes future research directions.
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2 Literature Search Strategy

This review systematically searches academic and industry literature across sev-
eral well-known databases, including IEEE Xplore!, Scopus (Elsevier)?, and Sci-
enceDirect?. The search captures a broad spectrum of research focusing on DTs
in the process industry w.r.t learning paradigms and modelling methodologies.
The search string (see Table 1) captures all relevant papers related to DTs that
mention modelling paradigms in the abstract, keywords or publication title. The
selection criteria (see Table2) ensure the selection of studies that are directly

relevant to the objectives of this review.

Table 1. Screening criteria for literature search

Database Scopus, IEEE Xplore, ScienceDirect

Search string | (“digital twin®” OR “cognitive twin*” OR “cyber twin®” OR

“adaptive twin*” OR “intelligent twin*’) AND (“unsupervised”
OR “supervised” OR “semi-supervised” OR “self-supervised”)

Document type | Journal and conference papers

Table 2. Studies selection criteria

Inclusion Criteria

I-1
I-2
I-3
I-4

I-5

Publications published as full research in relevant conferences and journals.
Scholarly literature, including books, book chapters, and technical reports.
Research focused on digital twins (DT) within the process industry.

Studies using machine learning, deep learning, other data-driven
techniques, physics-based techniques, or a combination in the context of
digital twins.

Contributions significantly advancing theory, methodology, or application
of digital twins in the process industry.

Exclusion Criteria

E-1
E-2
E-3
E-4

E-5

Non-full-length research articles, including abstracts, essays.
Publications lacking an accessible abstract or missing metadata.
Documents not written in English.

Studies on digital twins that omit explicit discussion of the modelling
methodology and learning paradigm as well as tackled tasks.

Research does not specifically address the application of DTs in process
industry.

! https://ieeexplore.ieee.org)/.
? https://scopus.com /.
% https://sciencedirect.com/.



38 M. Mayr et al.

2.1 Quality Assessment Checks

Each research left after filtering based on the selection criteria (see Table 2) based
on the abstract, keywords and title, gets checked on specific aspects of quality
measurements in the full-text of the research, which are outlined in Table3. A
score of 2 is awarded if the quality item is fully met, demonstrating comprehen-
sive adherence to the criteria. A score of 1 is given if the item is partially met,
indicating that while there is some adherence to the criteria, certain aspects are
lacking or not fully developed.A score of 0 is assigned if the criterion is not met
or the information is unavailable, reflecting a complete absence of the required
information or a failure to meet the specified quality standard.

Table 3. Quality Assessment List

Quality Item | Description

Problem Clearly defines the research problem and objectives

Context Describes the research’s industrial or practical context

Methodology | Details the research methodology, including concrete modelling methodologies

Learning Details the learning paradigm and tasks

Architecture | Explains the architectural components

Evaluation |Evaluates the methodology on real-world or synthetic data

Limitation |Discusses study limitations and future research directions

2.2 Selection of Primary Studies

Each research left after filtering based on the selection criteria (see Table 2)
is included as a primary study. All full texts, if available, of primary studies
are scanned and evaluated based on the quality assessment list (see Table 3).
This process ensures the fine-grained inclusion of research items that provide
significant insights into modelling, learning, and architectural-related aspects of
DT-creation for the process industry.

2.3 Data Synthesis and Analysis Approach

Data synthesis constitutes gathering, summarizing, and interpreting the data
extracted from the primary studies. It is a crucial phase where qualitative and
quantitative statistics are drawn and further analyzed. The approach focuses on
synthesizing data specifically to address the pre-defined research questions (see
Sect. 1.1. We will extract each primary study’s data items specified in Table 4.
This extracted data will be collectively analyzed to synthesize a comprehensive
overview addressing each research question. For instance, we will gather and
analyze all specific modelling methodologies mentioned in the studies (RQ 1)
and subsequently visualize the findings. A similar approach will be applied to
the other research questions, enabling us to identify patterns, trends, and areas
lacking in the current literature.
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Table 4. Data Items Extracted from Primary Studies

Data Item Description Relevant RQ
DOI Unique identifier for research Documentation
Title Title of the study Documentation
Keywords Indexed Keywords Demographics
Year Year of publication Demographics
Modelling Method | Modelling methodology used, e.g., CNN, RQ1
AE, HMM, etc.
Learning Paradigm | Learning paradigm used, e.g., supervised, |RQ 2
semi-supervised, unsupervised,
self-supervised, etc.
Modelling Type Modelling type used, e.g., data-based, RQ 2
physics-based, hybrid, etc.
Modelling Task Model is evaluated or developed as a, e.g., | RQ 3
regression-related model,
classification-related model,
clustering-related model
Architecture Technology stacks, e.g., frameworks, Documentation
concepts or stacks proposed to host
model(s)
Use-Case Applied use-case, e.g. anomaly detection Documentation

3 Reporting the Review

In this section, we report the intermediate steps of the selection process, give an
overview of all the studies selected by the selection criteria, and give an overview
of the primary studies after scanning the full texts (Table5).

Table 5. Study Selection Process.

Selection Stage Number of Studies
Studies matching the search query 326

Studies after deduplication and language filter | 250

Studies after filtering (see Table 2) 40

Studies after reference snowballing 43

Studies after full-text review (see Table 3) 31

3.1 Overview of All Studies

This section presents an aggregate analysis of the studies identified through the
search strategy. Critical trends over the years are highlighted in Fig. 1, illustrat-
ing the growing interest and evolution of DT-related modelling in the industrial
sector.
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Fig. 1. (Left) The number of publications matching the search query over time. (Right)
The number of publications matching the search query and passing the selection criteria
over time.

3.2 Overview of All Primary Studies

The primary studies, selected based on their comprehensive coverage of digital
twin technologies and their impact on industrial manufacturing, are examined
in greater detail. This includes a deeper dive into the modelling methodologies,
learning paradigms and architectural components discussed across these studies.
The number of selected primary studies for each year divided into the different
data sources is denoted in Fig.1 on the right hand side. In addition, the pro-
portions of the modelling task, the modelling type of the DT, and the utilized
learning paradigm are visualized in Fig.2. The concrete modelling methodolo-
gies for DT-creation are denoted in Fig. 3 as a matrix-like scatter plot over time.
The size of the scatter point is based on the published research papers utilizing
the corresponding methodology.

In addition, the individual extracted research items, including information on
types, modelling task (MT), modelling methodology (MM), learning paradigm
(LP), architecture (Arch) and experiments (Exp), are denoted in Table6. For
ensuring a compact table representation, the abbreviated terminology is used,
e.g. data-based (D), hybrid (H), semi-supervised (SS), supervised (S), unsuper-
vised (U), self-supervised (SFS), transfer learning (TL) and reinforcement learn-
ing (RL). The modelling methodologies are abbreviated as Autoencoder (AE),
Long-Short-Term Memory (LSTM), Convolutional Neural Network (CNN),
Physics-Informed Neural Network (PINN), Finite Element Analysis (FEA), Heat
Transfer Equations (HTE), Decision Tree (DTR), Neural Network (NN), Atten-
tion Mechanism (AM), Bayesian Network (BN), Graph Neural Network (GNN),
Gaussian Mixture Models (GMM), Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), and Echo State Networks (ESN).
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Table 6. Summary of Primary Studies. Modelling Task (MT'), Modelling Methodology
(MM), Learning Paradigm (LP), Arch (Architecture), Exp (Experiments).

Type | MT MM LP Arch |Exp |Author

D Classification AE, LSTM SS yes yes Lu et al. [22]

D Classification NN, GA SS no yes Orosnjak et al. [25]
H Regression, Classification | RNN S, RL yes no Jaensch et al. [16]
D Classification CNN, AM S partly | yes Li et al. [21]

D Regression AE SFS, TL | no yes Yan et al. [35]

H Classification CNN S, U yes yes Yu et al. [36]

H Regression DTR, MLP, SVM, HTE, FEA | S, U, TL | partly | yes Valdés et al. [32]

H Regression PINN U no yes Hosseini et al. [14]
H Classification FEA, DTR S partly | yes Gawade et al. [11]
D Classification CNN U, TL yes Sun et al. [30]

H Classification CNN S, TL partly | yes Jauhari et al. [17]

H Regression SSM, RNN, ESN S partly | partly | Dettori et al. [9]

D Regression, Classification | DTR, SVC, NN S no yes Chen et al. [§]

D Clustering AE U partly | yes Cancemi et al. [6]

D Classification CNN, AE S partly | partly | Bauer et al. [4]

D Classification BN SS partly | yes Qi et al. [27]

D Classification LSTM, AE S, U yes yes Hu et al. [15]

H Regression GNN S no yes Hernandez et al. [13]
H - CNN, ANN S, TL yes partly | Alexopoulos et al. [3]
D Classification, Regression | DTR, AM, LSTM U yes yes Zhang, Rui et al. [3§]
D Classification AE SS partly | yes Castellani et al. [7]
D Classification, Clustering | DTR, NN U, S partly | yes Naser [24]

H Classification SVM S partly | yes Gaikwad et al. [10]
D Classification GMM U yes yes Ladj et al. [19]

H Clustering FEA SS, TL | yes yes Xia et al. [34]

D Classification CNN S partly | yes Tang et al. [31]

H Regression RNN, CNN, LSTM, AE U partly | yes Gupta et al. [12]

H Classification CNN S no yes Parola et al. |26]

D Regression MLP, SVR, DTR S yes yes Boukredera et al. [5]
D Regression MLP, NN S partly | yes Schroer et al. [29]

H - - - yes no Abburu et al. [2]*

4 Evaluating the Research Questions

This critical analysis of the primary studies aims to address the research ques-
tions outlined earlier. Each question is explored through the lens of the findings
from these studies. This section summarizes the findings and synthesizes the evi-
dence to provide a coherent understanding of the current landscape and future
directions in digital twin technologies for industrial manufacturing.

Research Question 1: What are the state-of-the-art modelling methodologies,
and how has their usage evolved? Are Encoder-Decoder architectures and atten-
tion mechanisms on the rise, possibly signalling the adoption of transformer-like
architectures to the industrial DT domain?
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The used modelling methodologies as the basis for DT-creation in the context
of process industry are Convolutional Neural Network (CNN) e.g. [4,21,26,30],
followed by Autoencoder (AE), e.g. [6,7,22,35]. Lue et al. [22] uses LSTMs in
combination with Autoencoder for condition monitoring of magnesium furnace
processes. The work combines data on electrical currents with segmented image
features of the furnace flames. Li et al. [21] uses a customized CNN with decon-
volution and convolution layers in combination with an attention layer on top to
detect anomalies in the SWa'T and WADI datasets. We have yet to see the adop-
tion of state-of-the-art modelling methodologies of Large Language Models for
the industrial DT-creation context. A notable exception in this context is Yan
et al. [35], who uses a masked autoencoder that pre-trains in a self-supervised
way using three novel pre-text tasks (inverse forecasting, coarser forecasting and
anomaly forecasting). Results indicate robust performance and “[...] may pave
the way for leveraging pre-training approaches for multivariate time-series fore-
casting in the context of digital twins”, however, it is crucial to understand the
behaviour of such pre-training strategies and the influence on various DT-related
tasks [35].

Research Question 2: What are the commonly utilized learning paradigms (i.e.
unsupervised, supervised, semi-supervised, self-supervised or transfer-learning)?
What is the distribution of data-driven and hybrid DT-modelling approaches?
Is the self-supervised learning paradigm for generating general and transferable
knowledge for various DT-related tasks already explored in the industrial DT
domain?

Most identified research items in this study use a supervised learning paradigm
(e.g. [3,10,13]) to model the DT’s use-case (see. Fig.2). Unsupervised learning
paradigms are commonly used in anomaly or fault detection ( [6,19]). Ladj et al.
use a Gaussian Mixture Model to determine the classification thresholds and also
integrate a “data-knowledge closed loop system which combines a data-driven
approach with a knowledge-driven approach, where expert rules are extracted
and inferred in order to interpret and augment the results of data processing”
[19]. The self-supervised learning paradigm, in combination with transferring
knowledge to other DT-related tasks (e.g. prediction, simulation, anomaly detec-
tion), is not well-explored in the domain of DTs (notable exception is [35]). We
think there is substantial potential in such learning paradigms, due to the vast
availability of multi-modal, high-dimensional and high-volume IloT-data, the
abundance of labelled data, and the diverse expectations and use-case scenarios
of DTs in industrial manufacturing. Around 40% of the analyzed primary studies
employ a hybrid modelling approach, combining data-driven and physics-based
modelling to tackle problems like small amounts of (labelled) data, or accuracy.
Notable hybrid-based models are Hosseini et al. [14], who use physics-informed
neural networks (PINNs) as a simulator for temperature profiles of laser powder
bed fusion (LPBF) processes w.r.t. the different input process parameters and
material thermal properties.
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Research Question 3: Are DT research and application studies more focused
on evaluation on classification, clustering tasks (e.g. anomaly detection) or
regression tasks (e.g. forecasting or imputation)?

Given the conducted review results, it is evident that most research in the
selected primary studies targets classification or clustering tasks, which are com-
mon for DT-related tasks like anomaly detection or failure identification. etc. (
[6,19,21,36]). Less well represented are scientific publications in the context of
DT in the process industry for regression tasks like forecasting or imputation (
[5,13,29]). Hernandez et al. propose a method based on graph neural networks
and encoder-decoder structures to predict the time evolution of an arbitrary
dynamical system using both geometric and thermodynamic inductive biases;
however, this work is limited to in-silico experiments, i.e. DT application of this
methodology for industrial processes is still missing [13].

5 Discussion and Conclusion

In this study, we conduct a structured literature review to unravel the mod-
elling methodologies, learning paradigms, and task-related evaluation aspects of
Digital Twins in the context of the process industry. We first state the research
questions, then formulate the search query and perform the search across vari-
ous literature databases. We subsequently filter the resulting list based on inclu-
dance and excludance rules and evaluate the full texts of the reduced list based
on defined quality criteria to capture the relevancy of the analyzed papers for
answering the specific research questions. The selected 31 primary papers apply
DT-related modelling methodologies to various use cases in the industrial man-
ufacturing domain. We synthesize the findings visually and textually to answer
the research questions. We observe abundant research for self-supervised and
transfer-learning paradigms (e.g. transfer knowledge to other DT-related tasks
like prediction, simulation or anomaly detection). We have identified a research
gap and think there is substantial potential in such learning paradigms due to
the vast availability of multi-modal, high-dimensional and high-volume IIoT-
data, the abundance of labelled data, and the diverse expectations and use-case
scenarios of DTs in the industrial manufacturing domain.
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