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Distributed Learning and Efficient Outcomes in

Uncertain and Dynamic Environments

by

Georgios Christos Chasparis

Doctor of Philosophy in Mechanical Engineering
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Professor Jeff S. Shamma, Chair

This dissertation focuses on the problem of multiagent coordination. When agents

have access to limited information about the environment (possibly other agents)

and learn what to play through repeated experimentation, convergence to desirable

equilibria might be challenging. The main contribution of the dissertation is the

introduction of a learning adaptation method, similar to reinforcement learning tech-

niques, accompanied with decision rules that are based on feedback control (dynamic

reinforcement). This learning framework exploits transient phenomena of the dynam-

ics (off-equilibrium behavior) to reinforce convergence to efficient outcomes when the

induced stochastic process has multiple resting points. In particular, it is shown ana-

lytically that non-efficient outcomes can be destabilized when dynamic reinforcement

is applied by even a single agent. The utility of the proposed framework is illustrated

in coordination games and distributed network formation, where non-efficient resting

points of the stochastic process can be destabilized. In the case of distributed network

formation, which is of independent interest, we also illustrate the utility of the pro-

posed learning adaptation method to incorporate multiple design criteria, usually met

in topology control for ad-hoc networks, which can reinforce convergence to desirable

outcomes.

xvii



CHAPTER 1

Introduction

1.1 Motivation

Recent research in autonomous control systems, such as robotic systems, has shown

the importance of designing systems that are adaptive to uncertain environments

while, in parallel, accomplish desirable high-level objectives, such as path-planning,

formation or self-assembly. By uncertain environments, we usually mean other robotic

systems with similar or conflicting interests. The problem becomes even harder when

a robotic system consists of a large number of robots, due to the possibility of failures

or the complexity of the problem (e.g., distributed estimation, multiplicity of objec-

tives, etc.). Each robot may have access to only local information, while there might

exist global objectives.

Problems that fit into the above framework include self-organization of robotic

systems (where multiple robots need to form a desired structure) and motion for-

mation of vehicles (where multiple vehicles need to move in a desirable formation).

Applications also include topology formation of an ad-hoc sensor wireless network

and coverage of an unknown area by autonomous sensors.

A common element of tasks of this form is the presence of multiple robots (usu-

ally called agents or players). The agents independently decide what to do, even

without having the necessary available information, or even without knowing the

team’s objective. Given the inherent uncertainty in these problems and the absence

of centralized control, these problems have been addressed within the framework of

1



learning, where agents learn their behavior by interacting with their environment,

either this environment corresponds to other agents, or an adversarial entity.

Systems with multiple agents (or multiagent systems) are not only encountered

in engineering problems. Multiagent systems have been used to model sociological

phenomena or simulate collective behavior in societies. In sociological systems, agents

interact with each other having only minimum available information about the be-

havior of the group, and applying generally naive rules of behavior. The behavior

of the group seems to follow certain rules, in several cases more rational than the

agents’ naive behavior. Social scientists try to describe such phenomena and explain

the underlying local interactions rules that could be responsible for certain collective

behaviors. Most of these methods rely on learning approaches, where agents adopt

behaviors that improve their performance with time.

Borrowing techniques and models used in different disciplines to describe collec-

tive behavior of multiagent systems can facilitate modeling and analyzing complex

systems. From an engineer’s perspective it may lead to new design techniques for

systems that are adaptive and learn to behave in a certain (desirable) way. Such

problems also require new local control techniques for reinforcing convergence to cer-

tain desirable global behaviors. This dissertation is a small effort towards these lines.

In conclusion, some of the most important challenges in multiagent systems are:

− modeling learning behavior at the agent-level based on local information;

− characterizing collective behavior based on the models of local interactions;

− introducing control techniques at the agent-level that will reinforce certain de-

sirable outcomes at the group-level.
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1.1.1 Coordination problems

We are going to restrict our attention to a class of problems for multiagent systems

where each agent’s objective is to coordinate (in some sense) with other agents. Such

situations can be classified as coordination problems. Since the multiagent systems

considered here do not assume any centralized control, we further assume that such

a coordination will be the result of an interaction process among agents.

In order to define a coordination problem, we adopt the definition of [Lew02]. We

first need to define a strategic interaction (or game) among multiple agents. In a

strategic interaction, each agent must choose one of several alternative actions (finite

in number). Often all agents have the same set of alternative actions, however this

is not necessary. Also each agent has preferences over the joint actions of all agents,

which implies that the outcome of any action an agent might choose depends on the

actions of the other agents.

Some combinations of actions are equilibria, at which each agent has done as well

as it can given the actions of the other agents.1 In an equilibrium combination, there

is no agent that it would have been better off had it alone acted otherwise. It is

possible that some or all of the agents would have been better off if all or some had

acted differently. Also, it is possible that an agent would have been better off had

one or some of the other agents have acted otherwise.

We can illustrate equilibria through payoff (or utility) matrices for coordination

problems between two agents, as shown in Table 1.1. Agent 1 selects row and agent 2

selects column. We also label alternative actions by labeled rows and columns (using

capital letters, e.g., A and B). The squares then represent combinations of the agents’

actions. We label these squares by two payoffs, where the left one corresponds to agent

1, and the right one corresponds to agent 2. These payoffs measure the desirability

of the outcome for each agent, i.e., a high-payoff outcome is more desirable than a

1In other words, a Nash equilibrium.
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low-payoff outcome. For example, in the game of Table 1.1, outcome (A,A) is more

desirable than (B,B) for both agents.

2.A 2.B
1.A 2, 2 0, 0
1.B 0, 0 1, 1

Table 1.1: A strategic interaction of two players and two actions.

Sometimes coordination problems are defined as situations where each agent is try-

ing to achieve uniformity of actions by each doing whatever the others will do. What

is important about uniform action combinations is that they are equilibria rather

than they correspond to uniform action combinations. However, just the presence of

equilibria does not make a strategic interaction a coordination problem.2

The main characteristic of a coordination problem that distinguishes it from other

strategic interactions lies in the presence of coordination equilibria.

Definition 1.1.1 (Coordination equilibrium) A coordination equilibrium is a com-

bination of actions in which no one would have been better off had any one other agent

acted otherwise.

As clearly follows, coordination equilibria are equilibria by definition. For example,

in the strategic interaction of Table 1.1, the combinations (A,A) and (B,B) are also

coordination equilibria.

Thus, at coordination equilibria it is of every agent’s interest to keep playing

the equilibrium, i.e., there is a coincidence (or alignment) of interests among the

agents. We specialize this property by assuming that coincidence of interest is not

only restricted in coordination equilibria. Instead, we assume that coincidence of

interest predominates in all possible outcomes of the game. More specifically, at any

combination of actions, if there is one or some agents that can benefit by changing

2For example, a strategic interaction may correspond to a pure conflict in which the agent’s
payoffs sum to zero in every square (usually called a zero-sum game).
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their actions, then all other agents do not get worse off by this change. We will refer

to such a strategic interaction as a game of aligned interests.

Definition 1.1.2 (Game with aligned interests) A game with aligned interests

is a strategic interaction of two or more agents in which, for any combination of

actions, if there exists an agent that can be better off by changing its action, then

there is no agent that would be worse off by such a change.

Another important characteristic of coordination problems is the multiplicity of

coordination equilibria. Of course, there are situations where there is only one co-

ordination equilibrium. However, in these situations the task of reaching a unique

coordination equilibrium may be trivial when every agent makes the best choice given

the actions of the other agents and when there is no considerable conflict of interest

among agents.

Besides the trivial case of a unique coordination equilibrium, there are also situ-

ations in which there exist multiple coordination equilibria amongst which an agent

is indifferent. We exclude this case, by defining the notion of a proper or strict equi-

librium.3 In particular, a proper or strict equilibrium is a combination of actions in

which an agent’s payoff is strictly greater than its payoff in any other choice it could

have made, given the others’ choices.

Summing up, we define coordination problems as follows:

Definition 1.1.3 (Coordination Problem) Coordination problems are strategic in-

teractions with aligned interests played by two or more agents in which there are two

or more proper coordination equilibria.

A special category of such games are games of pure coordination, where there is a

perfect coincidence of interest (i.e., identical payoffs for every combination of actions).

3Also called strict Nash equilibrium.
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For example, the game in Table 1.1 is a game of pure coordination. An example of a

coordination problem, that is not a pure coordination, is the Stag-Hunt game shown

in Table 1.2.

2.A 2.B
1.A 4, 4 1, 3
1.B 3, 1 3, 3

Table 1.2: The Stag-Hunt game.

A common characteristic of the coordination problems of Tables 1.1–1.2 is that

proper coordination equilibria coincide with uniform combinations of actions. We will

refer to this special class of coordination problems as coordination games.

Definition 1.1.4 (Coordination game) A coordination game is a coordination prob-

lem such that each agent has the same number of actions with every other agent, and

every uniform combination of actions is a proper coordination equilibrium and vice

versa.

It can be easily verified, not all coordination problems can be modeled as a coordi-

nation game.

1.1.2 Examples of coordination problems

Coordination games are a special class of coordination problems. Several strategic

interactions, mostly related to social phenomena, can be modeled in the form of a

coordination game, including the adoption of new technologies and the adjustment

of prices for products between oligopolists. In some social science literature, coordi-

nation games, and more specifically the Stag-Hunt game, are considered the simplest

games to model the establishment of a social contract [Sky04]. In fact, establishing

coordination equilibria with high payoffs can require the cooperation among more
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than one agent, as easily seen in Table 1.2.4

However, coordination problems are not necessarily restricted to social sciences.

In fact, many applications in engineering deal with convergence to coordination

[JLM03, BHO05, Mor05, OFM07], synchronization [Str03], swarming or formation

control [Olf06]. Several self-organization processes can also fit into the framework of

coordination problems (or variations of them), such as the formation of a network

among agents, where each agent decides which links to establish.5

Other examples that fit into this framework include self-organization of mechanical

parts, where certain structures are more beneficial than others, and motion planning

for multi-robot systems, where certain formation patterns may be more desirable than

others. Note that in all these examples there exist multiple coordination equilibria.

However, it is not necessarily true that all these problems can be formulated as aligned

interest games. It strongly depends on the specifics of the design method and the

underlying assumptions.

1.1.3 The role of strategic learning

Even though several problems related to multiagent systems can be formulated as co-

ordination problems, the main question is how agents can solve such a coordination

problem so that desirable outcomes are the solutions. This problem has been exten-

sively studied by both economists and sociologists, as well as by computer scientists.

The approach followed strongly depends on the underlying assumptions governing

the information available to each agent and the communication constraints among

agents.

In general, a learning algorithm is imposed that governs the off-equilibrium be-

havior (i.e., before any form of equilibrium arises). In this framework, agents learn

4In the coordination game of Table 1.2, either agent can guarantee payoff 3 by playing action B,
but both agents can receive 4 only if they cooperate with each other.

5This problem will be analyzed in Chapter 5.
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how to interact with the other agents either by trial-and-error (when, for example,

the information given to each agent about the other agents’ actions is limited), or by

more demanding computations (when for example agents have access to the history

of action combinations observed).

Examples of learning dynamics include fictitious play [FL98, SA05] (where each

agent chooses an action that maximizes its expected utility against the empirical fre-

quencies of the actions played by the other agents throughout history), regret-based

algorithms [You04] (where each agent chooses an action than minimizes its regret),

reinforcement learning [SP00] (where each agent’s confidence playing an action de-

pends on its success throughout history), and satisficing [CM05] (where each agent

continues playing an action when it provides higher payoff than its aspiration level).

Note that different learning models assume different information structures for

each agent. For example, fictitious play assumes full knowledge of the combination of

actions played at each iteration by all agents, while reinforcement learning assumes

that agents are only aware of their own action and payoff history. Therefore, the

learning model used strongly depends on what is considered a reasonable model for

interactions. For example, in sociological systems a model of fictitious play may be

considered reasonable, however, in robotic systems reinforcement learning may be

more appropriate.

1.2 Objective and contributions

This thesis is a small contribution towards modeling, analysis and distributed control

in multiagent coordination problems under the framework of distributed learning.

Starting from the fact that multiagent coordination problems accept many equilibria,

some of which are not necessarily desirable, we focus on the problem of equilibrium

selection and how desirable equilibria can be sustained through local decision rules.
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To this end,

− we introduce a simple reinforcement learning to model interactions, which is of

independent interest and allows for equilibrium selection in coordination prob-

lems;

− we introduce a dynamic reinforcement rule, inspired by feedback control, for

local decisions that is based only on transient phenomena, but reinforces the

emergence of efficient equilibria even when only a single agent applies it;

− we illustrate the applicability of this framework in coordination games and

show how dynamic reinforcement can exclude convergence to risk-dominant

equilibria;

− we further analyze the problem of distributed network formation under the same

framework, which is of independent interest;

− we introduce reward functions for distributed network formation that allow for

multiple design criteria met in engineering applications such as sensor networks;

− we illustrate the applicability of dynamic reinforcement in equilibrium selection

in distributed network formation.

1.3 Thesis outline

In Chapter 2, we introduce the basic framework that we will consider in the remainder

of the dissertation. In particular, we introduce the elements of a strategic interaction

(or game) among multiple agents in a coordination problem. We characterize the

equilibria of coordination problems and we classify them based on payoff and risk.

We further discuss several forms of learning dynamics that can be used for both

describing social or economic interactions and designing engineering systems. When
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agents apply learning dynamics to learn how to interact with other agents, multiple

outcomes might emerge. Therefore, we present prior work on equilibrium selection

and discuss the advantages and disadvantages of the existing approaches.

In Chapter 3, we introduce a distributed learning model that belongs to the gen-

eral class of learning automata. The specific approach is well known in psychology,

computer science and adaptive control, since it is characterized by its simplicity and

minimal information requirements. It allows the possibility to design engineering sys-

tems, and furthermore can explain social and economic phenomena. The learning

model has several similarities with a larger class of learning algorithms, usually called

reinforcement learning, which have been extensively discussed in machine and robotic

systems literature. We analyze the asymptotic properties of this reinforcement scheme

that are useful for equilibrium selection in coordination problems.

In Chapter 4, we specialize the stability properties of the reinforcement scheme

introduced in Chapter 3 for coordination games. Our main goal is to ensure conver-

gence to a desired coordination in a distributed and adaptive fashion. The exploita-

tion of transient (off-equilibrium) phenomena opens up the possibility of reinforcing a

more desirable equilibrium. We are particularly interested in reinforcing the efficient

equilibrium under dynamic reinforcement, a special form of selecting actions that is

inspired by feedback control techniques. Unlike traditional reinforcement learning,

agents using dynamic reinforcement use a combination of long term rewards and

recent rewards to construct myopically forward looking action selection probabilities.

This form of feedback in agent’s decisions can also be viewed as a more complex life-

like behavior. We will show that dynamic reinforcement can be used as an equilibrium

selection scheme, since only a single agent is able to destabilize the non-desirable

equilibria. In fact, dynamic reinforcement, when applied by one or some agents, can

make the probability of converging to non-desirable equilibria equal to zero.

We will illustrate the results in coordination games. In these games, we will show
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that the dynamic processing presented here can destabilize a non-desirable equilib-

rium even if the risk associated with it is less than the risk of any other equilibrium

(i.e., when it risk-dominates). In general, the resulting equilibrium selection under

the presented dynamic reinforcement need not be determined by either payoff- or

risk-dominance or both.

In Chapter 5, the problem of distributed network formation will also be treated

within the same framework, where nodes strategically interact by establishing links

with other nodes. Agents can form and sever unidirectional links and derive direct

and indirect benefits from these links. Also, each agent’s decisions depend on its own

previous links and past benefits, and link selections are subject to random perturba-

tions. We proceed by characterizing the stability properties of the proposed model.

We illustrate the flexibility of the model to incorporate various design criteria, in-

cluding dynamic cost functions that reflect link establishment and maintenance, and

distance-dependent benefit functions. We show that the learning process assigns pos-

itive probability to the emergence of multiple stable configurations (called strict Nash

networks), which need not emerge under alternative processes such as best-reply dy-

namics. We analyze the specific case of so-called frictionless benefit flow, and show

that a single agent can reinforce the emergence of an efficient network through the

aforementioned dynamic reinforcement. Finally, we illustrate how such a distributed

reinforcement scheme can be used as a design method for topology control in sensor

networks.

Finally, Chapter 6 presents concluding remarks and possible future directions of

interest.
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CHAPTER 2

Setup and Prior Work

2.1 Introduction

In this chapter, we present the basic framework that we will consider in the remainder

of the dissertation. In particular, we introduce the elements of a strategic interaction

(or game) among multiple agents in a coordination problem. We characterize the

equilibria of coordination problems and we classify them based on payoff and risk.

We further discuss several forms of learning dynamics that can be used for both

describing social or economic interactions and designing engineering systems. When

agents apply learning dynamics to learn how to interact with other agents, multiple

outcomes might emerge. Therefore, we present prior work on equilibrium selection

and discuss the advantages and disadvantages of the existing approaches.

2.2 Setup

2.2.1 Game

A game involves a finite number of agents, say n. Let I , {1, 2, ..., n} be the set of

agents. Each agent i ∈ I has a finite set of available choices (or actions) that will

be denoted by Ai. Let αi ∈ Ai denote an action of agent i, and α = (α1, α2, ..., αn)

the combination of actions of all agents. We will also define A to be the cartesian

product of the action spaces of all agents, i.e., A , ×i∈IAi.

The combination of actions of all agents, α, produces a payoff (or utility) for each
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agent. The utility of agent i, which will be denoted by Ri, maps the n-tuple of actions

(or action profile) α to a payoff Ri(α) ∈ R. It constitutes a measure of the desirability

of the action profile α, where a high-payoff action profile is more preferable than a

low-payoff action profile. Let also denote by R : A → R
n the combination of payoffs

(or payoff profile) of all agents, i.e., R(·) , (R1(·), R2(·), ..., Rn(·)).

Definition 2.2.1 (Game) A (strategic-form) game Γ is a triple {I,A, R}.

Since each agent selects actions independently, we generally assume that each

agent’s action is a realization of an independent discrete random variable. Let xij ∈

[0, 1] denote the probability that agent i selects action αi = j ∈ Ai. If
∑

j∈Ai
xij = 1,

then xi , (xi1, xi2, ..., xi|Ai|) is a probability distribution over the set of actions Ai (or

strategy of agent i), where |Ai| denote the cardinality of the set Ai.

Let ∆(|Ai|) denote the set of probability distributions (or probability simplex ) over

the set of actions Ai, i.e.,

∆(|Ai|) , {x ∈ R
|Ai| : x ≥ 0, 1Tx = 1},

where 1 is the vector of ones of size |Ai|. Then xi ∈ ∆(|Ai|). We will also use

the term strategy profile to denote the combination of strategies of all agents x =

(x1, x2, ..., xn) ∈ ×i∈I∆(|Ai|). For brevity we will use the notation X , ×i∈I∆(|Ai|).

Note that if xi is a unit vector (or a vertex of ∆(|Ai|)), say ej , then agent i selects

action j with probability one. This strategy will be called pure strategy. Accordingly,

a pure strategy profile is a profile of pure strategies. We will also use the term mixed

strategy to denote a strategy that is not pure.

Let E[X] denote the expected value of a random variable X. We define a Nash

equilibrium as follows.
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Definition 2.2.2 (Nash equilibrium) A strategy profile x∗ = (x∗1, x
∗
2, ..., x

∗
n) is a

Nash equilibrium if and only if, for each agent i ∈ I,

E[Ri(α1, α2, ..., αn)|(x∗i , x
∗
−i)] ≥ E[Ri(α1, α2, ..., αn)|(xi, x

∗
−i)] (2.1)

for all xi ∈ ∆(|Ai|) and xi 6= x∗i , where x∗−i denote the equilibrium strategy profile of

all agents but i.1

In the special case where for all i ∈ I, x∗i is a pure strategy, then the Nash

equilibrium is called pure Nash equilibrium. Also, in case the inequality in (2.1) is

strict the Nash equilibrium is a proper or strict equilibrium and it will be called a

strict Nash equilibrium.

2.2.2 Coordination problems

Based on the definition of a Nash equilibrium, a coordination equilibrium is defined

as follows.

Definition 2.2.3 (Coordination equilibrium) A coordination equilibrium is a pure

Nash equilibrium α∗ = (α∗
1, α

∗
2, ..., α

∗
n) in which, for any agent i ∈ I and any agent

s ∈ I,

E[Ri(α1, α2, ..., αn)|(α∗
s, α

∗
−s)] ≥ E[Ri(α1, α2, ..., αn)|(αs, α

∗
−s)] (2.2)

for all αs ∈ As and αs 6= α∗
s.

Similarly to the definition of a strict Nash equilibrium, a strict coordination equi-

librium is a coordination equilibrium that satisfies (2.2) with strict inequality.

Definition 2.2.4 (Game with aligned interests) A game with aligned interests

is a strategic interaction of two or more agents in which, for any combination of

1The notation −i denotes the complementary set I\{i}. We will often split the argument of a
function in this way, e.g., F (α) = F (αi, α−i) or F (x) = F (xi, x−i).
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actions α = (α1, α2, ..., αn), if there exist an agent i ∈ I and action α′
i ∈ Ai such that

α′
i 6= αi and

E[Ri(α1, α2, ..., αn)|(α
′
i, α−i)] ≥ E[Ri(α1, α2, ..., αn)|(αi, α−i)],

then E[Rs(α1, α2, ..., αn)|(α′
i, α−i)] ≥ E[Rs(α1, α2, ..., αn)|(αi, α−i)], for all s 6= i.

As we have already stated in Definition 1.1.2, a coordination problem is defined

as follows.

Definition 2.2.5 (Coordination problem) A coordination problem is a game with

aligned interests played by two or more agents in which there are two or more strict

coordination equilibria.

Then, a coordination game is defined as follows.

Definition 2.2.6 (Coordination game) A coordination game is a coordination prob-

lem such that |A1| = |A2| = ... = |An| and the strict coordination equilibria are

{x ∈ X : x = (ej, ej , ..., ej), j ∈ Ai}.

2.2.3 Payoff versus risk dominance

One measure for comparing coordination equilibria in a coordination problem is the

importance that each agent assigns to it, which is reflected in the payoff level. Hence,

we say that a coordination equilibrium payoff-dominates another coordination equi-

librium, if and only if each agent’s payoff is greater in the former equilibrium than

in the latter one. For example, in the Stag-Hunt game of Table 1.2, the coordination

equilibrium (A,A) payoff-dominates the coordination equilibrium (B,B). A coordi-

nation equilibrium will be called payoff-dominant (or efficient) if it payoff-dominates

any other coordination equilibrium. For example, the coordination equilibrium (A,A)

in Table 1.2 is the payoff-dominant equilibrium.
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A different measure for comparing coordination equilibria is related to the risk

associated with each equilibrium [HS88]. Consider, for example, the generic coor-

dination game of Table 2.1. For such a game to be a coordination game, we need

2.A 2.B
1.A a11, b11 a12, b12
1.B a21, b21 a22, b22

Table 2.1: A generic game.

to assume that a11 > a21, b11 > b12, a22 > a12, and b22 > b21. We will define the

risk factor of equilibrium (A,A) (or (B,B)) as the smallest probability, say p, such

that if one agent believes that the other agent is going to play action A (or B) with

probability > p, then A (or B) is the unique optimal action to take.

For example, if agent 1 believes that agent 2 is playing action A with probability

p, then agent 1 will prefer to play action A if and only if

a11p+ a12(1− p) ≥ a21p+ a22(1− p)

or, equivalently, if

p ≥
a22 − a12

a11 − a21 + a12 − a22
, α.

Similarly, agent 2 will prefer to play action A if agent 1 plays action A with probability

p ≥
b22 − b21

b11 − b12 + b21 − b22
, β.

Then, the risk factor of equilibrium (A,A) will be rA , min{α, β}.

Accordingly, we can show that the risk factor of the coordination equilibrium

(B,B) will be rB , min{1−α, 1−β}. Then, we define the risk-dominant equilibrium

as the equilibrium with the smallest risk factor. For example, if rA ≤ rB, then the

equilibrium (A,A) is the risk-dominant equilibrium.

In the simpler case of the symmetric game of Table 2.2, assume that a > c, d > b.
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Under these conditions the symmetric game of Table 2.2 is a coordination game. The

2.A 2.B
1.A a, a b, c
1.B c, b d, d

Table 2.2: A symmetric game.

combination (A,A) is risk-dominant if

rA ≤
1

2
⇒ a− c ≥ d− b.

Note that the last condition corresponds to equilibrium (A,A) having the largest

deviation cost2.

For example, in the Stag-Hunt game of Table 1.2, if either agent deviates from

the equilibrium (B,B), then the deviation cost is 2. Accordingly, when either agent

deviates from A, the deviation cost is 1. Therefore, (B,B) is the risk-dominant equi-

librium. However, in the coordination game of Table 1.1, the coordination equilibrium

(A,A) is the risk-dominant equilibrium.

2.2.4 Repeated games and learning dynamics

If a game Γ is repeated for several periods, then it is called a repeated game. In this

dissertation, we will only consider games that are played repeatedly. When a game

is played repeatedly agents are able to learn through their previous experience how

to play the game. In social sciences and economics, repeated games were introduced

as a way to justify the emergence of a social or economic situations.

Since it was not clear enough which learning dynamics is reasonable for interac-

tions, multiple learning dynamics have been introduced and analyzed. Some of these

dynamics include:

2The deviation cost is associated with a deviation from an equilibrium and corresponds to the
payoff loss that a agent experiences through this deviation.
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− Replicator dynamics: A population of agents is considered, where each agent is

assigned a strategy. An agent reproduces a number of identical agents (i.e., who

play the same strategy) that is proportional to the payoff received at each period

(see Chapter 2 in [Sam97]). Consequently, agents with high-payoff strategies

are at a reproductive advantage compared to agents with low-payoff strategies.

− Imitation dynamics: Agents copy the strategies of others, especially strategies

that are popular or appear to yield high payoffs [Ale00]. In contrast to replicator

dynamics, the payoffs describe how agents select actions, and not on how fast

they multiply. This behavior seems more reasonable for learning dynamics. On

the other hand, it is assumed that agents observe the strategies of other agents,

an assumption that is not always satisfied.

− Reinforcement learning: Agents tend to adopt actions that yielded a high payoff

in the past, and to avoid actions that yielded a low payoff. More specifically,

the probability of taking an action in the present increases with the payoff that

resulted from taking that action in the past [NT89, SB98]. Similarly to the

imitative models, agents make decisions based on payoffs, but it is an agent’s

own past payoffs that matter, not the payoffs of others.

− Best-reply dynamics: Agents adopt actions that optimize their expected payoff

given what they expect others to do. In the simplest such models, agents select

best replies to the empirical frequency distribution of their opponents’ previous

actions (fictitious play) [FL98, You98, SA05]. Contrary to reinforcement learn-

ing, agents make decisions based on observations of other agents’ actions, an

assumption that is not always satisfied.

The above dynamics can be considered “reasonable” for interactions depending on

the underlying assumptions. In social interactions, both imitation and reinforcement

learning are appropriate, since people usually observe other people’s choices or learn
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through their own experience. Instead in economic interactions a more sophisticated

model might be more appropriate, such as best reply. From an engineer’s point

of view, the goal is to design an application where multiple agents are interacting

locally with each other to accomplish a desirable global outcome. In this framework,

a learning model that assumes limited information, such as reinforcement learning or

imitation dynamics, would be more reasonable.

2.3 Equilibrium selection in coordination games

Given a model of learning dynamics, one of the questions arising in coordination

problems is “what outcome can be considered reasonable?” Many different disciplines

have tried to answer this question, including philosophers, game theorists, sociologists.

The same problem has been treated in a different way by computer scientists and

engineers, who try to answer the question “can we achieve a desirable outcome?” Of

course, to answer such a question, it is necessary to know exactly the framework and

the rules of interactions among agents.

We would like to answer the second question, i.e., how is it possible to achieve a

desirable outcome in a coordination problem, when agents are not necessarily fully

strategic, i.e., their behavior is myopic. A useful way for trying to answer such a

question is to consider first the simplest coordination problem, that is a coordination

game. In these simple games, we are going to investigate first which equilibrium

selection techniques have been used in game-theoretic literature, and then discuss

open problems and questions emerging. In particular, we will restrict our attention

in the following information frameworks:

1. uniform interactions;

2. local interactions with fixed neighborhood;
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3. local interactions with migration;

4. local interactions with evolving neighborhood.

In parallel, we will discuss the effect of communication among agents as well as

different forms of dynamics in equilibrium selection.

2.3.1 Uniform interactions

The model of [KMR93] focuses on two-player and two-action symmetric coordination

games. The model evolves over time, and at each period, each agent is randomly

matched to play the game with each of the remaining agents exactly once (as in a

tournament). It is assumed that agents select their strategies based on best-reply,

i.e., they choose the action that provides the largest expected payoff given the cur-

rent distribution of strategies in the population. Reference [KMR93] also assumes

that agents experiment every once in a while with exogenously fixed probability.

The dynamics define an underlying Markov chain, which has a unique stationary

distribution. It is shown that when agents play a coordination game for which a

risk-dominant equilibrium exists, then the process spends asymptotically most of its

time at the risk-dominant equilibrium when the number of agents is sufficiently large.

Reference [You93] considers a similar model, where agents are drawn from a large,

finite population of agents. Each agent who is selected to play the game, chooses a

strategy that is a best-reply to a sample of the history of play in the past. It is also

assumed that agents make mistakes or experiment with different strategies. When

the dynamics are applied to a two-player and two-action coordination game for which

a risk-dominant equilibrium exists, [You93] shows that this dynamic process spends

asymptotically most of its time at the risk-dominant Nash equilibrium when the

sample and history size are sufficiently large.

The results of [KMR93] and [You93] have a natural intuition, namely that the
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basin of attraction of the risk-dominant equilibrium is larger than that of the non

risk-dominant equilibrium. In the long run this leads to a higher probability that in

any given period agents will be playing the risk-dominant equilibrium. This is the

stochastically stable convention, in the sense defined by [FY90].

Reference [Blu03] investigates how robust the above results are to different models

of noise effects, called noise models. The model considers a population of agents

who are randomly paired to play a two-strategy symmetric coordination game. At

randomly chosen moments, agents have an opportunity to revise their current strategy

choice, according to the expected utility of each strategy when the distribution of

strategies is assumed known (e.g., agents may best-respond to the current distribution

of play). A stochastic alternative is to consider a noise model similar to [KMR93], or

the “log-linear model” of [Blu93] where the log of the odds of choosing a given strategy

is proportional to the payoff difference between the two strategies. Noise models map

payoff differences into trembles. More specifically, the probability of playing a strategy

would depend on the difference of its expected payoff from the expected payoff of the

other strategies. It is shown that for a general class of noise models (including the log-

linear model of [Blu93] and the mistakes model of [KMR93]), the same convergence

results of [KMR93, You93] hold.

In the models of [KMR93] and [You93] the probability of a mistake is uniformly

distributed in the population of agents and independent of the current state of the

iteration process. A different noise model may reinforce different classes of equilibria

(not only risk-dominant). More specifically, [BL96] has shown that it is possible

to find small noise effects so that any long-run prediction is possible. This is very

easy to see, if for example we define the noise rule such that there is no noise at

either one of the equilibria. Then this is going to be the unique equilibrium that will

survive through time. Although these specifically tailored perturbations are state

dependent and uniformly distributed across population, this result suggests that the
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noise process cannot be ignored.

Finally, we would like to point out that it is possible to get different convergence

results compared to [KMR93, You93], when one allows agents to select more than

one action at a time, as proposed by [GG97]. Although such an assumption is not

easily justifiable, it is interesting to point out that under this assumption the learning

process (which is based on best-reply with mistakes) converges to the payoff-dominant

equilibrium in a two-player two-action coordination game.

2.3.2 Local interactions with fixed neighborhood

The problem of equilibrium selection in the presence of a fixed neighborhood structure

has been considered by [Ell93]. More specifically, a framework similar to [KMR93]

is adopted. In each period the agents are randomly matched and each pair plays a

two-player and two-action coordination game. Agents are playing a best-reply to the

current distribution of strategies in the population, while their decisions are subject

to mistakes. The model of [Ell93] departs from the model of [KMR93] in that it

allows for different matching processes within the population. In particular, a local

matching rule is introduced in which agents interact with a small group of close

friends, neighbors, or colleagues. It is shown that in the case of a local matching

rule, the dynamic process converges to the risk-dominant equilibrium as in the model

of [KMR93]. It is further shown that the relative probabilities of the time that the

process spends on each equilibrium change for some mutation rate.3 In particular,

the probability that the process spends its time on the non-risk-dominant equilibrium

for some given mutation rate is smaller than the corresponding one at the uniform

matching model of [KMR93], which implies a change in the convergence rate as the

noise effect approaches zero.

A different local interaction framework is considered by [Blu93]. It is assumed that

3Mutation rate is the probability of a mistake.
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agents are located on a lattice, and each agent interacts directly with only a finite

set of neighbors. Several stochastic methods for strategy revision are considered

including best-reply and perturbed best-reply.4 It is shown that in the case of two-

player and two-action coordination games where a risk-dominant equilibrium exists,

the log-linear strategy revision process is ergodic and converges to the risk-dominant

equilibrium as the noise effect vanishes and the time goes to infinity.

2.3.3 Local interactions with migration

Several game theorists have investigated the effect of migration (or endogenous lo-

cation interactions) in equilibrium selection. It is reasonable to assume, at least in

sociological systems, that agents have discretion with regard to location choice, and

hence some freedom in choosing their neighbors. In other words, rather than fix-

ing exogenously the pattern of interaction, we would like to consider the case when

the location and strategy co-evolve. It can be shown that migration can allow the

payoff-dominant equilibrium to prevail.

More specifically, [Rob93] studies a model motivated by biological evolution. The

population is partitioned into a finite set of sub-populations that grow independently

at rates that reflect the payoffs earned by the agents within them. At exogenously

fixed intervals, all populations become extinct and are re-populated by small groups

randomly drawn from the preceding generation. When the time between extinction

events is sufficiently long, the populations in which the efficient strategy is played

grow arbitrarily large relative to other populations.

Reference [Oec99] studies an evolutionary model where agents initially are dis-

tributed over a given set of independent locations (or “cities”), and, over time, may

freely adjust both their strategic and locational decisions. They are doing so by

4In particular, the log-linear model or smooth best-reply is considered, where the log of the
probabilities of choosing a given strategy is proportional to the payoff difference between the two
strategies.
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playing a best-reply both in terms of their location and strategy. Assuming that all

conventions are represented at the start of the process (i.e., are adopted by some

city), [Oec99] shows that the payoff-dominant equilibrium will prevail throughout.

The intuitive reason why this occurs is that any agent, when given the opportunity

to adjust its location and strategy, will immediately prefer a city where the efficient

convention is played.

A similar interaction model is considered by [Ely02]. Ely does not assume that

all conventions are initially present at some location. Instead, agents’ decisions are

subject to mistakes with some small probability. As in the scenario considered in

[Oec99], agents who are playing the non-efficient equilibrium will migrate to a location

playing the efficient convention when the opportunity arises, and hence the efficient

convention will prevail throughout.

A different model from the models of [Oec99, Ely02] is considered by [BV04].

Agents adjust both location and strategy as in the papers [Oec99, Ely02], however,

these opportunities never arrive simultaneously. Hence, an agent who receives the op-

portunity to migrate will not be sure that it will be able to migrate to the appropriate

location. This uncertainty has the consequence that the model no longer produces the

efficiency conclusion of [Oec99, Ely02]. In particular, depending on the exact payoff

structure, one may encounter (a) convention coexistence in the medium-run (when

the possibility of mistakes in the decision process is absent), or (b) inefficiency in the

long-run (when mutations are allowed).

Similar to the above frameworks is the context considered by [Hoj04]. In this

paper, two-player and two-action coordination games are considered, when agents are

allowed to change location, and when agents are interacting only with their neighbors.

The paper studies best-reply dynamics in which agents choose an action from the

underlying coordination game and a location from a finite set of locations. Each

location has a circular topology. In contrast to [Ell93], which assumes the same
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topology, agents endogenously choose their location which implies that the number

of agents in each circle changes over time. At each period, an agent observes the

distribution of play of its closest neighbors (not necessarily all the members of the

location), and the average distribution of all the other locations. The agent is matched

to a random subset of its closest neighbors, which introduces a scale effect, since the

agent is interacting with more than one agent. This is the main difference with

the previous models on mobility. Agents apply best-reply dynamics with a small

probability of randomness. It is shown that in the long-run the process spends most

of its time in states which are not necessarily efficient. The scale effect may have a

significant impact on the emergence of non-efficient states, since a agent may prefer

interacting with a large cluster of agents playing the non-efficient strategy than with

a small cluster of agents playing the efficient strategy. Of course, this would also

depend on the riskiness of each equilibrium.

2.3.4 Local interactions with evolving neighborhood

We have already discussed that in the context of two-player and two-action coordi-

nation game, [KMR93] and [You93] have shown that population of agents, who are

subjected to small random perturbations in their strategy choices, tend in the long

run to coordinate on risk-dominant strategies as defined by [HS88].

However not in every situation do agents face each other with equal probability

(which corresponds to a uniform matching rule). Instead agents may interact through

a specific interaction pattern. As we discussed above, the results of [KMR93, You93]

continue to hold when agents interact according to a certain fixed neighborhood struc-

tures as shown by [Ell93] (see also [You98]). This may lead to the conclusion that

the risk-dominant equilibrium is the only reasonable convention for a society, even if

it is non-efficient and not in the society’s common interest.

Different conclusions may be derived when an endogenous network structure is
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considered, i.e., when the network structure also changes with time. As we saw in

the discussion about the effect of mobility, e.g. [Ely02] and [MSS01], the network

structure is endogenized through locational choices (agents have discretion over the

neighborhood they want to locate themselves). Conditions can be derived under

which the efficient equilibrium is the one that is reached by a society, even when it is

not risk-dominant.

Such a model will require to sever all old ties, form new ties and switch strategies

simultaneously. However, there are situations where agents can choose which links to

form in a more discrete manner and without necessarily having to uproot all previous

relationships. Reference [JW02b] considers a model where agents have the discretion

over which links to form and which to sever, without changing their location. In

particular, at each time a potential link is selected according to some probability

distribution, and is formed or severed according to the myopic interest of both agents.

In parallel, an agent is selected randomly to update its strategy according to a best-

reply to the current network structure and the previous play. Agents are assumed to

play a coordination game with the agents they are directed linked to.

Such a modification has a large impact on the way that play changes from one

strategy to another, and thus leads to different results regarding the states that survive

through time (stochastically stable states). In particular, [JW02b] shows that some of

these states are neither efficient nor risk-dominant. Which of those states survive will

depend on the specifics, such as the relative benefits of the play of different actions,

the structure of the costs to links, and the number of agents in the society.

Reference [GV05] also derives similar conclusions when structure is evolving. The

main difference with the model of [JW02b] is that links are bidirectional and can be

formed by a single agent (i.e., it is a noncooperative link formation model). It is shown

that if costs of forming links are below a certain threshold then agents coordinate on

the risk-dominant action, while if costs are above this threshold then they coordinate
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on the efficient action. Also, these findings are robust to modifications in the link for-

mation process, different specifications of link formation costs, alternative models of

mutations as well as the possibility of interaction among indirectly connected agents.

Reference [DGJ04] also considers a large population coordination game where

agents are distributed spatially, and both the actions of the agents and the commu-

nication network between these agents evolve over time. The setting that [DGJ04]

considers is similar to the setting of [JW02b]. The only differences are (a) agents are

placed on a circle, although they can still create their own neighborhood by forming

and severing links with other agents, and (b) the cost assigned to a link among two

agents is proportional to the distance of the agents on the circle. Agents react myopi-

cally to their environment by deciding about (a) which strategy to play against their

neighbors, and (b) which links to form. Links are formed using the link formation

model of [JW02b], while strategies of play are adjusted by a myopic best-reply to

the strategy of the neighborhood at the previous time instant, which is similar to

the model of [Ell93], where a small possibility of mistakes is also considered. Refer-

ence [DGJ04] shows that the risk-dominant convention is the unique stochastically

stable convention, meaning that it will be observed almost surely when the mistake

probabilities are small.

2.3.5 The effect of communication

The effect of signals in equilibrium selection of communication games is investigated

in several papers. Evolutionary dynamics with signals is found to have dramatically

different dynamics from the same game without signals. Signals are able to change

the stability properties of equilibria, the size of their basin of attraction, and create

new polymorphic equilibria.

A nice example to see the effect of signals and communication on equilibrium

selection is to consider a population of agents that are either programmed to play
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strategy A or B in the game shown in Table 2.3, that is known as the Prisoner’s

Dilemma.

2.A 2.B
1.A 2, 2 0, 3
1.B 3, 0 1, 1

Table 2.3: The Prisoner’s Dilemma

The agents do not change their strategies, but instead replicate according to their

“success” (or payoff) when they encounter other agents. This model has been ex-

tensively used in evolutionary game theory [Smi82]. It has also been shown that in

this game, strategy A cannot spread throughout the whole population when there is

a small possibility that a mutant behavior is generated.5 The main reason for that

is that an agent B that enters such a population can do better when it encounters

agents playing A.

As [Rob90] points out, if there is a signal that is not used by the population, a

mutant could invade by using this signal as a “secret handshake”.6 Mutants would

defect against the natives and cooperate with each other. They would then do better

than natives and would be able to invade. Without signals, a population of defectors

in the Prisoner’s Dilemma would be evolutionary stable. With signals this is no longer

true. However, this does not mean that signals establish cooperation in the Prisoner’s

Dilemma.

Let us now consider the Aumann’s Stag-Hunt (Assurance Game) of Table 2.4 in

the context of evolutionary dynamics.

A B
A 9, 9 0, 8
B 8, 0 7, 7

Table 2.4: Aumann’s Stag-Hunt

5Such a strategy is not an evolutionary stable strategy (ESS) [Smi82].
6This idea is also in accordance with the notion of salient equilibrium (Schelling’s focal point).
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In this game there are two evolutionary stable strategies (hunt stug (A) or hunt

hare (B)). Suppose there are two available signals. In this case, a strategy specifies

(a) which signal to send, (b) what act to do if signal 1 is received, and (c) what

act to do if signal 2 is received. In this new game, there is an evolutionary stable

strategy which is an entirely new equilibrium created by the signals. This is the state

of the population in which: 50% sends signal 1, plays B when they receive 1, plays

A when they receive A, and 50% sends signal 2, plays A when they receive signal 1,

plays B when they receive signal 2 (see Chapter 5 of [Sky04], or [Sky02]). Note that

these two strategies cooperate with each other producing outcome (A,A), but not

with themselves. In a population that has only these two strategies, the replicator

dynamics must drive them to the 50/50 equilibrium. This state will be evolutionary

stable.

The question that arises is whether this new equilibrium plays a significant role

in evolutionary dynamics. An interesting point is to consider how frequent such an

equilibrium arises. References [Sky02, Sky04] performed a large number of simulations

to measure the basin of attraction of this equilibrium. These papers further compared

it with the basin of attraction of the equilibria all hunt stag at equilibrium and all

hunt hare at equilibrium. The results were that the new polymorphic equilibrium has

a non negligible basin of attraction.7 On the other hand, the basin of attraction of all

hunt stag at equilibrium was increased significantly. Without signaling, the basin of

attraction of all hunt stag was smaller than the basin of attraction of all hunt hare.

Note that in an equilibrium where everyone is hunting stag or hare, signals carry

no information. Still signals have something to do with the basin of attraction of

these equilibria. In particular, [Sky02, Sky04] conclude that transient information

matters since it is important in determining the eventual outcome of the evolutionary

process.

7The size of its basin of attraction was as large as the basin of attraction of all hunt hare at
equilibrium.
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2.3.6 The effect of dynamics

Different forms of learning dynamics has been applied for strategy selection, including

aspiration and imitation learning dynamics. A modification of the model of [KMR93]

is considered by [RV96]. As mentioned above, the model of [KMR93] assumes that

each agent plays a best-reply based on the payoff it would have received had it played

against all other agents at once. Reference [RV96] considers instead the case where,

at each iteration, an agent is randomly matched to play the game only once. Agents

imitate the strategy that produced the largest average payoff among the agents that

applied it at the previous step. The conclusions are quite different from those of the

model of [KMR93]. In the class of two-player and two-action coordination games, the

payoff-dominant equilibrium is selected even if it is not risk-dominant. Furthermore,

convergence to the invariant distribution is relatively fast compared to the convergence

in [KMR93].

Reference [BS97] examines the robustness of the results of [KMR93, You93] under

a different learning process where mistakes are not necessarily negligible (as considered

in the papers of [KMR93, You93] in the limiting behavior). In particular, each member

of the population is characterized by a strategy (among two available strategies).

An agent is selected to revise its strategy according to some probability which is

independent across the population and across time. The strategy revision process

assumes that pairs of agents are randomly drawn to play a two-action game, which

implies that each agent has played the game infinite amount of times and with a

distribution of agents that reflects the distribution of strategies in the population.

Then, when the agent receives the opportunity to revise its strategy, it recalls its

average realized payoff in the last period (learning period) and compares it with

an aspiration level. A small probability of mistakes is also present. Depending on

the specifics of the strategy revision process, it is possible for the payoff-dominant

equilibrium or the risk-dominant equilibrium to be selected, when the size of the
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population goes to infinity and the noise effect goes to zero. In fact, the closer the

revision process to best-reply dynamics the more likely it is to select the risk-dominant

equilibrium.

A similar approach that has been used to predict behavior in coordination games

with aspiration learning algorithms is by [CM05]. In this model, agents base their

decisions only on the rewards received (i.e., payoff-based algorithms). An agent con-

tinues playing an action if and only if the reward received is strictly greater than

the agent’s aspiration level (i.e., its average over all its previous payoffs). In case an

efficient action profile has not been played in the past, the learning algorithm will get

trapped in a non-efficient equilibrium. In [CM05], a small imperfection is added to

agents’ decisions. In particular, each agent experiments with different actions when

the reward received is close enough to its aspiration level, hence avoiding the possibil-

ity that the algorithm converges to a non-efficient equilibrium. However, the analysis

in [CM05] does not discuss the emergence of stable oscillations in agents’ responses,

which is the effect of the introduced imperfection in the decision rule. These oscilla-

tions do not die away unless agents average their payoffs over the whole history (i.e.,

when there is no discount).

References [SP00, Sky04, Sky07] investigate under which conditions local inter-

action can reinforce the payoff-dominant equilibrium when agents play a Stag-Hunt

game. In particular, agents create links according to a reinforcement learning scheme

that reinforces links with high rewards. The reward a agent receives is higher the

more interactions it has (reciprocal benefits or symmetrized reinforcement). Also, as

a model of interaction, the Stag-Hunt game is considered and the strategy is revised

based on imitate-the-best strategy among neighbors. Simulations showed that when

the imitation was “fast” most of the trials converted to “all playing Hare”, while in

the case of “slow” imitation most of the trials converted to “all playing Stag”.

Reference [Sky04] questions whether or not such a conclusion is general or depends
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on the specific choice of adaptive dynamics for both the structure and the strategy.

For example, we may consider as well the case where strategy and structure is up-

dated according to reinforcement learning, since the members of the population are

quite naive to apply selection based on imitation. On the other hand, maybe the

members of the population are more-strategic minded and they best-respond to their

environment.8 Reference [Sky04] gets to the conclusion that when we pair structure

dynamics, which is based on either reinforcement or imitate-the-best or best-reply,

with slow strategy dynamics based on imitate-the-best, we end up with all Stag

Hunters (efficient equilibrium). On the other hand, when we change the strategy

dynamics, we does not observe the same conclusions.

2.3.7 Discussion and open problems

Several issues are related to equilibrium selection in coordination games, as pointed

out by the previous literature, including

− Multiplicity of long-term outcomes;

− Robustness of each equilibrium in noise;

− Effect of transient phenomena (such as learning dynamics, state-dependent noise

and signals) on reinforcing the efficient outcomes.

We saw that long-term predictions in coordination games are not necessarily

unique. Instead multiple equilibria may be observed, including equilibria that are

not payoff-dominant. However, we need to note that the predictions of the learning

processes depend on the specifics of the learning model (the off-equilibrium behavior).

For example, in the model of [You93], agents are matched to play the game only

once and when each agent best-replies to a large sample of the history, then the risk-

dominant equilibrium emerges as the prediction. On the other hand, in the model

8It has been applied to model network formation in the papers of [BG00] and [Wat01].
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of [RV96], agents are matched to play the game only once, but imitate the most

successful strategy of the previous time stage. In that case, the payoff-dominant

equilibrium emerged. This remark is also supported by [BS97], where it was shown

that the closer the learning process is to best-reply dynamics, the more likely it will

select a risk-dominant equilibrium. Finally, similar arguments are stated by [Sky04],

which observed that different forms of dynamics may lead to different conclusions.

Of course, this is not to say that certain learning dynamics can lead to certain

outcomes. The importance of these observations are that under certain rules of local

behavior, certain off-equilibria (transient) phenomena may be well exploited to pro-

duce desirable global behavior. This is very well illustrated by the effect of signaling

as presented in Section 2.3.5, where it was shown that under the same learning dy-

namics, but with the presence of signals (with no meaning), long-term behavior was

totally different than the behavior without signals.

2.4 Remarks

We conclude that learning dynamics in coordination games (and more generally in

coordination problems) are characterized by an asymptotic behavior that is difficult

to predict. The predictions derived by the existing literature depends highly on the

underlying assumptions, that is the learning dynamics and the information structure.

Different conclusions are derived when slight modifications are made in the underly-

ing model, showing the fragility of models of multiagent simulation. Furthermore, the

effect of transient phenomena seems to be underestimated in a large amount of the

existing literature, since in several cases, such as in the presence of signals or when

the communication structure changes with time, the predictions change dramatically.

Our goal is to analyze coordination problems within a very simple framework that

assumes minimal and local information to each agent, which is suitable for engineer-

ing applications. In parallel, we want to explore locally off-equilibrium behavior to
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control the collective asymptotic behavior. Through this simple framework, we seek

to produce design tools for distributed control of multiagent systems in coordination

problems.
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CHAPTER 3

Learning Automata

3.1 Introduction

In this chapter, we introduce the basic form of the learning dynamics that we will

consider in the remainder of the dissertation. The learning dynamics considered

belongs to the general class of reinforcement learning discussed in Section 2.2.4 and is

a special form of the learning automata [NT89]. We selected this form of dynamics

because of its distributed nature and simplicity, since it assumes minimal amount of

information available to each agent, namely its own previous actions and previous

rewards.

In this chapter, we will also describe the asymptotic behavior of the learning

automata. In particular, we will consider two forms of algorithms, the ones where

experience is averaged throughout history (diminishing step-size algorithms) and the

ones where experience is discounted (constant step-size algorithms). We will present

the advantages of each one of these algorithms in terms of their asymptotic behav-

ior. Finally, we will introduce a new form of learning automata where decisions are

exogenously perturbed, and we will illustrate its utility in equilibrium selection.

3.2 Variable structure stochastic automata

Variable-structure stochastic automata update the strategy or the action probabilities

on the basis of an input. Reference [VV63] was the first to suggest automata that
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Figure 3.1: Learning automaton.

update transition probabilities. The automata are represented by the quintuple:

{X ,A,B,F ,G}

where X is the set of internal states or strategies, B is the set of inputs, A is the set

of outputs, F : X ×A×B → X is a function that maps the current state and current

input to the next state, i.e.,

x(k + 1) = F(x(k), α(k), β(k))

and G : X → A a function that maps the current state into the current output, i.e.,

α(k) = G(x(k)).

In such an automaton, the input and the current state together determine the next

state as well as the current output. A graphical representation of a learning automaton

is provided in Fig. 3.1.
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3.3 Reinforcement schemes

We will consider automata with a finite set of outputs A that will be referred as

actions. In general terms a reinforcement scheme can be represented by a mapping

F , where the state x ∈ ∆(|A|) corresponds to the strategy, i.e., the probability

distribution over the actions in A. Therefore, if xi(k) corresponds to the probability

of action αi ∈ A at time k, the automaton selects action αi with probability xi(k).

The basic idea behind a reinforcement scheme is a rather simple one. If the

automaton selects an action i at instant k and a favorable input1 results, the action

probability xi(k) is increased and all the other components of x(k) are decreased. For

an unfavorable input, xi(k) is decreased and all the other components are increased.

These changes in xi(k) are known as reward2 and penalty, respectively.

The precise manner in which x(k) is changed depending on the action αi per-

formed at stage k and the response β(k) of the environment, completely defines the

reinforcement scheme. This, in turn, determines the resulting Markov process and

hence the behavior of the overall system.

One of the reinforcement schemes that is extensively used is the linear reward-

inaction scheme, whose description follows.

3.3.1 Linear Reward-Inaction (LR−I) scheme

The basic idea of this scheme is not to change probabilities whenever an unfavorable

response results from the environment. Following a favorable response, however,

the probability of an action is increased. The LR−I scheme was considered first

in mathematical psychology by [Nor68] but was later independently conceived and

introduced into the engineering literature by [SN69].

1Defined as output of the environment.
2A term derived from psychology.
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Assume that there are only two actions, i.e., A = {α1, α2}. Then, according to

the LR−I scheme the probability of selecting action α1 is updated according to:

x1(k + 1) = x1(k) + ǫ(1− x1(k)) α(k) = α1 β(k) = 0

x1(k + 1) = x1(k) α(k) = α1 β(k) = 1

x1(k + 1) = (1− ǫ)x1(k) α(k) = α2 β(k) = 0

x1(k + 1) = x1(k) α(k) = α2 β(k) = 1

(3.1)

We may use the more compact form:

x(k + 1) = x(k) + ǫR(β(k))(α(k)− x(k)) (3.2)

where R : B → {0, 1} is the reward function. Moreover, R(β(k)) = 1 when β(k) = 0

(favorable response) and R(β(k)) = 0 when β(k) = 1 (unfavorable response). Also,

here α(k) = e1 when action α1 is performed, and α(k) = e2 when action α2 is

performed.

From equation (3.1) it follows that the probability x1(k) is increased if action

α1 is performed and results in a favorable response, is unchanged if an unfavorable

response results when α1 or α2 is performed and is decreased only when the other

action α2 is performed and results in a favorable response.

Since we are going to use the recursive form (3.2) extensively, we will be using the

same notation, α ∈ A, to refer to an element of A either in terms of an index over A

or a vertex of ∆(|A|).

3.3.2 Modified Linear Reward-Inaction (L̃R−I) scheme

We consider a slightly modified linear reward-inaction scheme, according to which

every action is successful with probability 1, however, the reward may vary depending
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on the action profile.3

In the case of |A| actions, this scheme can be expressed recursively by the form:

x(k + 1) = x(k) + ǫR(α(k))[α(k)− x(k)] (3.3)

where R : A → [0,∞) is the reward function. Moreover, let R(α(k)) = di with

probability one when action α(k) = αi is performed.

The performance of the automaton can be determined by the asymptotic behavior

of E[R(α(k))|x(k)], which is given by

E[R(α(k))|x(k)] =

|A|
∑

i=1

xi(k)di = dTx(k) (3.4)

We can show that:

Claim 3.3.1 If the automaton uses the L̃R−I scheme, then

∆xi(k) , E[xi(k + 1)− xi(k)|x(k)] = ǫxi(k)

|A|
∑

j=1

xj(k)(di − dj)

Proof. We have

∆xi(k) = E[xi(k + 1)− xi(k)|x(k)] = E[ǫR(α(k))(α(k)− xi(k))|x(k)]

= ǫdi(1− xi(k))xi(k) + ǫ

|A|
∑

j=1,j 6=i

dj(0− xi(k))xj(k)

= ǫxi(k)

|A|
∑

j=1

xj(k)(di − dj)

�

3In that case, a zero reward will implicitly correspond to an unfavorable action.
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The conditional expectation of the change in payoff defined as

∆R(k) , E[R(α(k + 1))−R(α(k))|x(k)]

satisfies:

∆R(k) = dT∆x(k).

Claim 3.3.2 ∆R(k) = ǫxTD̃x/2, where the elements of the matrix D̃ are given by

D̃(i, i) = 0, D̃(i, j) = (di − dj)
2.

Proof. We have

∆R(k) = dT∆x(k)

= ǫ

|A|
∑

i=1

dixi

|A|
∑

j=1,j 6=i

xj(di − dj)

= ǫ

|A|
∑

i=1

|A|
∑

j=1,j>i

xixj(di − dj)
2

= ǫxTD̃x/2

where the elements of the matrix D̃ are given by D̃(i, i) = 0, D̃(i, j) = (di − dj)
2. �

Note that the matrix D̃ is positive semidefinite.

3.4 Convergence results in a stationary environment for L̃R−I

The convergence properties of L̃R−I can be described by as follows.

Proposition 3.4.1 (Constant step size: Convergence) Assume that di, for i =

1, 2, ..., |A|, are distinct and nonnegative. The Markov process {x(k)}k that corre-

sponds to the L̃R−I reinforcement scheme converges w.p.1 to the set of unit |A|-vectors.
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Proof. Let Rmax , maxα∈AR(α). The stochastic process {Rmax −R(α(k))}k∈N, is a

nonnegative supermartingale, since

E[[Rmax − R(α(k + 1))]− [Rmax − R(α(k))]|x(k)] = −∆R(k) ≤ 0.

Hence by the martingale convergence theorem A.1.1, {R(α(k))}k converges to a ran-

dom variable w.p.1. It also follows from Corollary A.1.1 that

lim
k→∞

∆R(k) = 0 w.p.1. (3.5)

This is possible only if either

(i) ǫ→ 0

or

(ii) x(k)TD̃x(k)→ 0



















w.p.1. (3.6)

Since we are considering a constant step size, condition (ii) is satisfied. Thus,

x(k)TD̃x(k) = 2

|A|
∑

i=1

|A|
∑

j=1,j>i

xixj(di − dj)
2 = 0.

All the terms on the r.h.s. are of the same sign and further the coefficients (di−dj)
2 are

nonzero when i 6= j by assumption. Hence (ii) is satisfied only when xi(k)xj(k)→ 0

for all i 6= j. This in turn means that x(k) converges to a unit vector w.p.1. Thus,

when (ii) is satisfied,

lim
k→∞

x(k) ∈ {ei : i = 1, 2, ..., |A|}, (3.7)

which concludes the proof. �
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In general it does not appear possible to prove convergence with probability one

when there are roots of the martingale equation other than those corresponding to

absorbing states.

Further conclusions regarding the convergence of the scheme can be derived when

the specific form of the step size sequence ǫ is known. This has been considered in

[Art93] for the L̃R−I where the step size sequence is decreasing instead of constant

considered here. In particular, we assume the general form of the step size sequence:

ǫ(k) =
1

ckν + 1
, (3.8)

for some c > 1.

When the step size sequence approaches zero, we may be able to exclude conver-

gence to an interior point of the probability space ∆(|A|) depending on how fast the

step size approaches zero. This can be shown by applying Theorem B.1.2 of [NH76]

on martingales.

Lemma 3.4.1 (Diminishing step size: Nonconvergence) Consider the reinforce-

ment scheme L̃R−I with step size sequence that is given by (3.8) with ν ∈ [0, 1]. Let

h be any interior point of the probability simplex ∆(|A|). If Bε(h) is an open ε-

neighborhood of h, then

P [ lim
k→∞

x(k) = h] = 0.

Proof. For any x(k) ∈ Bε(h), there exists κ > 0 such that minx∈Bε(h) x(k)
TD̃x(k)/2 =

κ. Hence,

∆R(k) ≥ κǫ(k).

Note also that R(k) =
∑|A|

i=1 dixi(k) ≤ Rmax for any x(k) ∈ Bε(h) and for some

Rmax > 0.
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Let us define the function V (k) = Rmax−R(α(k)), which is a nonnegative function

in Bε(h). The function V satisfies:

E[V (k + 1)− V (k)|x(k)] = −E[R(α(k + 1))− R(α(k))|x(k)] = −∆R(k) ≤ −κǫ(k),

where κǫ(k) > 0 and
∑∞

k=1 κǫ(k) = ∞. Therefore, by Theorem B.1.2 of [NH76]

(Appendix A), we conclude that the process x(k) must exit Bε(h) in finite time with

probability one. �

The following theorem is a direct consequence of the proof of Proposition 3.4.1

and Lemma 3.4.1.

Theorem 3.4.1 (Diminishing step size: Convergence w.p.1) Consider the re-

inforcement scheme L̃R−I and assume that di, i = 1, 2, ..., |A|, are distinct and non-

negative. Let the step size given by (3.8) with ν ∈ [0, 1]. Then, the Markov process

{x(k)}k converges to the set of vertices, {ei : i = 1, 2, ..., |A|}, with probability one.

3.5 Mathematical formulation of automata games

Let n automata be assumed to take part in a game. The automaton i ∈ I ,

{1, 2, ..., n} can be described by a quintuple:

{Xi,Ai,Bi,Fi,Gi},

where Xi is the set of internal states of automaton i ∈ I, Bi is the set of inputs of

automaton i, Ai is the set of outputs of automaton i, Fi : Xi × Ai × Bi → Xi is a

function that maps the current state and the current input into the next state, i.e.,

xi(k + 1) = Fi(xi(k), αi(k), βi(k))
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and Gi : Xi → Ai a function that maps the current state into the current output, i.e.,

αi(k) = Gi(xi(k)).

Theoretically, it is possible for automaton i to correspond to different reinforce-

ment schemes for different values of i. For purposes of analysis, it is found more

convenient to use identical learning algorithms for all the automata.

3.5.1 Games of L̃R−I automata

Let all the automata taking part in the game use the L̃R−I scheme. The automata

update their probability distributions over their action sets at every instant based on

the reward received from the environment.

When the action profile is α(k) = (α1, α2, ..., αn) let the reward of agent i be

Ri(α(k)). Also xi(k) denotes the probability distribution governing the choice of

actions of automaton i at the kth stage. Then the expected reward of the automaton

i at each stage is given by

E[Ri(α)|x] =
∑

α1,α2,...,αn

x1α1
x2α2
· · ·xnαn

Ri(α1, α2, ..., αn). (3.9)

where here xiαi
denote the αith entry of the vector xi. Using the definitions above,

the game can now be described by a Markov process whose state space is the product

simplex space, that is X = ×i∈I∆(|Ai|).

At every stage k, based on the probability distributions x1(k), x2(k), ..., xn(k), the

automata choose a play α(k) and based on the response of the environment as well

as the learning schemes used x(k) , (x1(k), x2(k), ..., xn(k)) evolves in X according
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to the recursion:

xi(k + 1) = xi(k) + ǫ(k)Ri(α(k))[αi(k)− xi(k)]. (3.10)

3.6 Games with identical interests for L̃R−I

Consider n automata, each operating independently and in total ignorance of the

other automata. The automata are involved in a game Γ. The game Γ is of identical

interests if, for any action profile α ∈ A, the payoffs are the same for all agents, i.e.,

Ri(α) ≡ R(α) for all i ∈ I.

We assume that each automaton is using the L̃R−I reinforcement scheme. The goal

is to determine the asymptotic behavior of the sequential game.

3.6.1 Two-player case

Assume that both agents use the L̃R−I scheme and are involved in a game Γ with

action sets A1 = {1, 2} and A2 = {1, 2}. The game can be represented by a 2 × 2

matrix D whose (i, j) element dij is defined as

dij , R(α = (i, j)), i, j ∈ {1, 2}.

Our goal is to derive asymptotic properties of the processes {x(k)}k. We will

demonstrate that {R(α(k))}k is a submartingale. This in turn will allow us for

deriving conclusions for {x(k)}k.

The conditional expected payoff for either one of the agents at each stage is given
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by

E[R(α)|x] =

|A1|
∑

i=1

|A2|
∑

j=1

x1ix2jdij = xT
1Dx2.

Define

δx1(k) , x1(k + 1)− x1(k)

δx2(k) , x2(k + 1)− x2(k)

∆x1(k) , E[δx1(k)|x1(k), x2(k)]

∆x2(k) , E[δx2(k)|x1(k), x2(k)].

Claim 3.6.1 The conditional expectation of the change in payoff for each agent,

∆R(k) , E[R(α(k + 1))− R(α(k))|x1(k), x2(k)],

satisfies

∆R(k) = ∆x1(k)
TDx2(k) + x1(k)

TD∆x2(k) + E[δx1(k)
TDδx2(k)|x1(k), x2(k)].

Proof. See Appendix D.1.1. �

Omitting stage index k for conciseness of notation, we have for the expected

incremental gain

∆R = ∆x1
TDx2 + xT

1D∆x2 + E[δx1
TDδx2|x1, x2]. (3.11)

The first two terms in (3.11) correspond to the incremental gain due to each agent

when the action probabilities of the other agent are constant. These are equivalent

to cases where each agent is operating in a stationary environment discussed earlier.
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In particular, for given x1, x2 ∈ ∆(2), define

v1 , Dx2 and v2 , DTx1.

Proposition 3.6.1 ∆x1
TDx2 = ǫxT

1 D̃1x1/2 and xT
1D∆x2 = ǫxT

2 D̃2x2/2, where the

elements of the matrix D̃s, s = 1, 2, are given by D̃s(i, i) = 0, D̃s(i, j) = (vsi − vsj)
2,

where vsi, s = 1, 2, is the ith entry of the vector vi.

Proof. We have

∆x1
TDx2 = ∆x1

Tv1

where the jth entry of the vector ∆x1 is

∆x1j = ǫ

|A1|
∑

i=1

x1jx1i(v1j − v1i).

Thus,

∆x1
Tv1 = ǫ

|A1|
∑

i=1

|A1|
∑

j=1,j>i

x1ix1j(v1i − v1j)
2 = ǫxT

1 D̃1x1/2

where the elements of the matrix D̃1 are given by D̃1(i, i) = 0, D̃1(i, j) = (v1i− v1j)
2.

Similarly we can show that ∆x1
Tv1 = ǫxT

2 D̃2x2/2, where the elements of the matrix

D̃2 are given by D̃2(i, i) = 0, D̃2(i, j) = (v2i − v2j)
2. �

It therefore follows that the first two terms are of order ǫ, where ǫ is the algorithm

step size, and are nonnegative. Hence, to show that {R(α(k))}k is a submartin-

gale it suffices to show that the third term is also nonnegative. The third term,

E[δx1
TDδx2] can be interpreted as the interaction term, which includes the effect of

the two automata acting simultaneously. It is evident that since the changes in action

probabilities appear as a product in this term, it is of order ǫ2. This term can be

explicitly computed for a general identical interest game as follows:
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Proposition 3.6.2 (2 automata with 2 actions) For two automata and |A1| =

|A2| = 2 actions, where both automata apply the L̃R−I scheme, we have

E[δx1
TDδx2|x1, x2] =

ǫ2x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2).

Proof. See Appendix D.1.2. �

Note that with L̃R−I reinforcement scheme, the quantity E[δx1
TDδx2|x1, x2] is

nonnegative under certain conditions in the reward matrix D. For example, if d11 >

d21 and d22 > d12, then E[δx1
TDδx2|x1, x2] ≥ 0 for all x1 and x2 in ∆(2).

Similar to Proposition 3.6.2, for the case of multiple actions where both automata

apply the L̃R−I scheme, we have:

Proposition 3.6.3 (2 automata with multiple actions) For two automata and

for any |A1| , |A2| ∈ N, |A1| , |A2| ≥ 2, where both automata apply the L̃R−I scheme,

we have

E[δx1
TDδx2|x1(k), x2(k)] =

ǫ2
|A1|,|A1|

∑

i,j=1,i6=j

|A2|,|A2|
∑

k,l=1,k 6=l

x1ix1jx2kx2l(dik − djk − dil + djl)((dik)
2 − (djk)

2 − (dil)
2 + (djl)

2).

Proof. See Appendix D.1.3. �

We observe that for certain payoff structures, the sequence {R(k)}k will be a

submartingale.
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3.6.2 Example: pure coordination games

We consider here a pure coordination game, and characterize the sign of ∆R(k) for

k = 1, 2, .... The Typewriter game is the pure coordination game that is given in

Table 3.1.

2.A 2.B
1.A 5, 5 1, 1
1.B 1, 1 2, 2

Table 3.1: The Typewriter game.

In the Typewriter game of Table 3.1, we have d11 = 5, d12 = 1, d21 = 1 and

d22 = 2. In this case, the payoff matrix for each agent is

D =





d11 d12

d21 d22



 =





5 1

1 2





Then, according to Proposition 3.6.2, the terms of order ǫ2 are given by

E[δx1
TDδx2|x1, x2] = 25ǫ2x11x12x21x22 ≥ 0.

Note that if x11, x12, x21, x22 6= 0, then E[δx1
TDδx2|x1, x2] > 0, which implies that

the conditional expectation of the payoff change is positive as long as the probability

of playing each of the two actions is non-zero.

3.6.3 Multiple player case

We may first consider the simple case of n = 3 agents with two actions each. Then,

the conditional expectation of the change in payoff of either one of the three agents
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will be

∆R =

2
∑

s,l,m=1

E[x+
1sx

+
2lx

+
3m − x1sx2lx3m|x1, x2, x3]R(α1 = s, α2 = l, α3 = m).

where for simplicity we use the superscript “+” to denote “next time stage.” ∆R

can be shown to have terms of the form, ǫx1sx2lδx3m (a single variational term),

ǫ2x1sδx2lδx3m (two variational terms), and ǫ3δx1sδx2lδx3m (three variational terms).

Regarding the single variational terms of ∆R, denoted by [∆R]1, we can show the

following.

Proposition 3.6.4 [∆R]1 ≥ 0.

Proof. Note that

[∆R]1 =

n
∑

i=1

|Ai|
∑

j=1

∆xijE[R(α1, α2, ..., αn)|αi = j, x]

where ∆xij denote the jth entry of the vector ∆xi. Define the expected payoff of

agent i when it selects action j as

vi(j, x) , E[R(α1, α2, ..., αn)|αi = j, x] ∈ R
|Ai|
+ . (3.12)

Then

[∆R]1 =

n
∑

i=1

|Ai|
∑

j=1

∆xijvi(j, x).

We also have that the jth entry of the vector ∆xi is

∆xij = ǫ
∑

a6=j

xijxia[vi(j, x)− vi(a, x)].
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Thus,

[∆R]1 = ǫ

n
∑

i=1

|Ai|
∑

j=1

∑

a6=j

xijxiα[vi(j, x)− vi(a, x)]vi(j, x)

= ǫ

n
∑

i=1

|Ai|
∑

j=1

∑

a>j

xijxia[vi(j, x)− vi(a, x)]
2

= ǫ
n

∑

i=1

xT
i D̃ixi/2

where the elements of the matrix D̃i are given by D̃i(s, s) = 0, D̃i(s, l) = [vi(s, x) −

vi(l, x)]
2 for l 6= s. Therefore, [∆R(k)]1 ≥ 0 for all k = 1, 2, .... �

Regarding the terms of more than one variational terms, we can show the following.

Proposition 3.6.5 If n automata, with multiple actions each, apply the L̃R−I scheme,

then the terms of ∆R of order ǫn, denoted by [∆R]n, satisfy

[∆R]n =

ǫn
|A1|,|A1|

∑

s1,k1=1,s1 6=k1

· · ·

|An|,|An|
∑

sn,kn=1,sn 6=kn

x1s1
x1k1

x2s2
x2k2
· · ·xnsn

xnkn





∑

α1∈{s1,k1}

· · ·
∑

αn∈{sn,kn}

(−1)α1+...+αn(−1)nR(α1, α2, ..., αn)



 ·





∑

α1∈{s1,k1}

· · ·
∑

αn∈{sn,kn}

(−1)α1+...+αn(−1)n[R(α1, α2, ..., αn)]n



 .

Proof. The proof follows similar steps with the proof of Proposition 3.6.3. �

The sign of the terms [∆R]n would depend on the reward function.
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3.6.4 Convergence results for 2× 2 pure coordination games

Based on Propositions 3.6.4–3.6.5, we may derive some general convergence results

for 2× 2 coordination games.

Theorem 3.6.1 (Convergence of 2× 2 pure coordination games) Let two au-

tomata play an identical interest game Γ with |A1| = |A2| = 2 actions and two strict

pure Nash equilibria. Let all automata apply the L̃R−I scheme with step size ǫ(k) > 0

such that
∑

k ǫ(k) = ∞. Then, the process {xi(k)}k converges to the set of vertices

{ej , j ∈ Ai} with probability one for every i ∈ I.

Proof. According to Proposition 3.6.4, [∆R(k)]1 ≥ 0 for all k = 1, 2, .... By as-

sumption, the game has two two strict pure Nash equilibria. These equilibria will

correspond to the action profiles {(1, 1), (2, 2)} or {(1, 2), (2, 1)}. In the first case,

d11 ≥ d21 and d22 ≥ d12, which implies that [∆R]2 ≥ 0. In the second case,

d21 ≥ d11 and d12 ≥ d22, which implies that [∆R]2 ≥ 0. Thus, ∆R(k) ≥ 0 for

all k = {0, 1, 2, ...}, which implies that the process {Ri,max−Ri(k)}k is a nonnegative

supermartingale. From the martingale convergence theorem A.1.1, we conclude that

the process {Ri,max − Ri(k)}k converges w.p.1. From the Corollary A.1.1, we also

conclude that it converges to the set of zeros of ∆R.

If ǫ(k) = ǫ > 0, then the process {xi(k)}k converges to the set of vertices {ej , j ∈

Ai} with probability one for every i ∈ I.

For the more general case of
∑

k ǫ(k) = ∞, we can apply Lemma 3.4.1 to show

that there is probability zero of convergence to any strategy in the interior of X =

×i∈I∆(|Ai|). Therefore, we conclude that the process {xi(k)}k converges to the set

of vertices {ej, j ∈ Ai} with probability one for every i ∈ I. �
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3.7 Games with aligned interests for L̃R−I

When n automata are involved in a nonidentical payoff game Γ, and all of them

apply the L̃R−I reinforcement scheme, then it is not necessarily true that the pro-

cess {Ri(α(k))}k is a submartingale for all i ∈ I. That is because [∆Ri(k)]1 is not

necessarily nonnegative. In particular, for nonidentical payoff games

[∆Ri]1 =
n

∑

s=1

|As|
∑

j=1

∆xsjE[Ri(α1, α2, ..., αn)|αs = j, x]. (3.13)

We can rewrite the above expression as

[∆Ri]1 = ∆xT
i · [E[Ri(α1, α2, ..., αn)|αi = j, x]]j∈Ai

+
n

∑

s=1,s 6=i

∆xT
s · [E[Ri(α1, α2, ..., αn)|αs = j, x]]j∈As

. (3.14)

In case agent i updates its strategy with the L̃R−I reinforcement scheme, the first

term of the r.h.s. can be written as

∆xT
i · [E[Ri(α1, α2, ..., αn)|αi = j, x]]j∈Ai

= ǫxT
i D̃ixi/2 ≥ 0

where D̃i ≥ 0 was defined in the proof of Proposition 3.6.4. Note that in games with

identical interests the payoff function Ri is the same for every agent, therefore the

second term of the r.h.s. of (3.14) is also of a quadratic form. However, in the case

of nonidentical payoffs this is not necessarily the case.

Because all automata apply the L̃R−I scheme, we know that ∆xs, s 6= i, will be

positive in the directions of increase in the expected payoff of agent s. Therefore, if

the vector

[E[Ri(α1, α2, ..., αn)|αs = j, x]]j∈As
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takes its maximum value in one of the directions where ∆xs is positive, then

∆xT
s · [E[Ri(α1, α2, ..., αn)|αs = j, x]]j∈As

≥ 0, s 6= i. (3.15)

If this is true for every agent s 6= i, then we also have that [∆R]1 ≥ 0. In this case,

the change in strategy of any agent s that applies the L̃R−I scheme, it does not make

agent i worse off. Note that this situation corresponds to a subset of the set of games

with aligned interests.4

Remark 3.7.1 Propositions 3.6.3, 3.6.4 and 3.6.5 proved for identical interest games

continue to hold for nonidentical interest games where ∆Ri is computed separately for

each agent i ∈ I.

Based on this observation, we can characterize the stability properties of L̃R−I

scheme when applied by 2 automata in the class of games that satisfy condition

(3.15).

Theorem 3.7.1 (Convergence of 2× 2 coordination games) Let two automata

play a game Γ with |A1| = |A2| = 2 actions and two pure strict Nash equilibria. Let

both automata apply the L̃R−I scheme with step size ǫ(k) > 0 such that
∑

k ǫ(k) =

∞, and assume that condition (3.15) is also satisfied. Then, the process {xi(k)}k

converges to the set of vertices {ej : j ∈ Ai} with probability one for every i ∈ I.

Proof. The proof follows the steps of the proof of Theorem 3.6.1. �

3.8 Perturbed learning automata

Here we consider a perturbation of the L̃R−I scheme, where the decisions of each

agent are slightly perturbed. In particular, we consider that each agent i selects

4As defined by Definition 2.2.4.
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action αi ∈ {1, ..., |Ai|} according to the perturbed policy

xλ
i (αi) , (1− λ)xi(αi) + λ/ |Ai| .

for some λ ≥ 0, which is called mutation rate. We will denote this scheme by L̃λ
R−I .

5

3.8.1 Convergence analysis for constant step size

We will focus our analysis in two-player and two-action nonidentical payoff games

where condition (3.15) is satisfied and each agent i has payoff matrix Di. In order to

characterize the asymptotic behavior of the stochastic process {x(k)}k, we will use

the nonnegative function

Ri(α(k)) = αi(k)
TDiα−i(k).

By Claim 3.6.1, the conditional expected change in agent 1’s payoff is

∆Ri = ∆xi
TDix−i + xT

i Di∆x−i + E[δxi
TDiδx−i|x].

In order to characterize the asymptotic properties of the game of learning automata,

we will compute the sign of ∆Ri. When condition (3.15) is satisfied, we already know

that if ∆xi
TDix−i ≥ 0, then xT

i Di∆x−i ≥ 0. Therefore, it suffices to compute the

sign of the terms ∆xi
TDix−i and E[δxi

TDiδx−i].

Define vi = Dix−i and D̃i ∈ R
2×2 such that D̃i(s, s) = 0 and D̃i(s, j) = (vis−vij)

2,

where vis is the sth entry of the vector vi. Let us also define the matrix Xi ∈ R
2×2

such that Xi(s, s) = 1− xis and Xi(s, j) = −xis.

5Note that for λ = 0, the learning scheme L̃0

R−I coincides with L̃R−I .
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Claim 3.8.1 When agent i ∈ {1, 2} applies the L̃λ
R−I scheme for some λ > 0, then

∆xi
TDix−i =

1− λ

2
xT

i D̃ixi +
λ

|Ai|
vT

i Xivi. (3.16)

Furthermore, there exists M1 ≥ 0 such that ∆xi
TDix−i ≥ −λM1 for all x ∈ X .

Proof. We have:

∆xi
TDix−i = ∆xi

Tvi

= (1− λ)
∑

j∈Ai

[

∑

s 6=j

vijxisxij − visxijxis

]

vij+

λ

|Ai|

∑

j∈Ai

[

∑

s 6=j

vijxis − visxij

]

vij

=
1− λ

2
xT

i D̃ixi +
λ

|Ai|
vT

i Xivi.

The first part of the r.h.s. has already been shown to be for the unperturbed case.

The second part can be easily verified. Note also that since the first term of the r.h.s.

is ≥ 0 for any x, and the second term is absolutely bounded, the conclusion follows. �

Note that D̃i is a positive semi-definite matrix, and therefore the first term of the

r.h.s. of (3.16) will be a nonnegative quantity. The sign of the second term of the

r.h.s. depends on xi.

Claim 3.8.2 When agent i ∈ {1, 2} applies the L̃λ
R−I scheme for some λ > 0, then

E[δxi
TDiδx−i] =

ǫ2x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2) + λψ(λ, x).

where ψ : X → R such that: (a) there exists M > 0 such that |ψ(λ, x)| ≤M , and (b)

limλ→0 λψ(λ, x) = 0.
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Proof. Note that

E[δxi
TDiδx−i]

= ǫ2(d11 − d12 − d21 + d22)[x12x22x
λ
11x

λ
21(d11)

2 − x12x21x
λ
11x

λ
22(d12)

2−

x11x22x
λ
12x

λ
21(d21)

2 + x11x21x
λ
12x

λ
22(d22)

2]

≈ ǫ2x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2)

+
λ

2
ǫ2(d11 − d12 − d21 + d22)[x12x22x11(d11)

2 + x12x22x21(d11)
2

−x12x21x11(d12)
2 − x12x21x22(d12)

2 − x11x22x12(d21)
2−

x11x22x21(d21)
2 + x11x21x12(d22)

2 + x11x21x22(d22)
2]

plus higher order terms of λ. Therefore, the conclusion follows. �

Let two automata apply the perturbed reinforcement scheme L̃λ
R−I . Let x∗ corre-

spond to a vertex of the state space X . Let us define the set V as the set of vertices of

the domain. Let us also define an ε-neighborhood of this set, denoted by Bε(V) ⊂ X

for some ε > 0, by

Bε(V) = {x ∈ X : dist(x,V) ≤ ε}

where dist(x,V) , infy∈V |x− y|. Finally, define

Dε(V) , X\Bε(V).

Proposition 3.8.1 Let two agents play a game Γ with |A1| = |A2| = 2 actions

and two pure strict Nash equilibria. Assume that each agent apply the perturbed

reinforcement scheme L̃λ
R−I with some constant step size ǫ > 0, and let condition

(3.15) hold. For any ε > 0, there exists λ0 = λ0(ε) such that the set Bε(V) is

recurrent for {x(k)}k for all λ < λ0 in that x(k) ∈ Bε(V) for infinitely many k w.p.1.

Proof. Let us define the functions Vi : ∆(|Ai|)→ R+ such that Vi(α(k)) = Ri,max −
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Ri(α(k)) which is nonnegative. Let us also define

V (α(k)) =
∑

i∈I

Vi(α(k)), (3.17)

which is also nonnegative. Then

∆V (x(k)) , E[V (α(k + 1))− V (α(k))|x(k)]

= −
∑

i∈I

[Ri(α(k + 1))−Ri(α(k))|x(k)]

= −
∑

i∈I

∆Ri(x(k)).

Note that for any two-player and two-action game with two pure strict Nash equilibria

we have

(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2) = K

for some K > 0. According to Claim 3.8.2, for some λ > 0 and ε > 0,

E[δxi
TDiδx−i] ≥ ǫ2ε2(1− ε)2K + λψ(x)

for all x ∈ Dε(V).

According to Claim 3.8.1 and the fact that condition (3.15) is satisfied, there are

constantsM1 > 0 andM2 > 0 such that ∆xi
TDix−i ≥ −λM1 and xT

i D
i∆x−i ≥ −λM2

for all x ∈ Dε(V).

Therefore, for all x ∈ Dε(V), we have

∆R(x(k)) ≥ ǫ2ε2(1− ε)2K + λψ(x)− λ(M1 +M2).

We conclude that for any given step size ǫ > 0 and any ε > 0, there exists λ0, such

that ∆Ri(x(k)) > 0 for all λ < λ0, i ∈ I and x ∈ Dε(V). Since this holds for
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both agents, we conclude that ∆V (x(k)) < 0 for all λ < λ0 and x ∈ Dε(V). Thus,

by Corollary B.1.1, we conclude that for any ε > 0, the set Bε(V) is recurrent for

{x(k)}k. �

The above proposition shows that the a small neighborhood of the vertices of the

probability simplex is a recurrent set. However, such an approach is not able to show

where exactly the process will converge if it converges. It turns out that there cannot

be convergence w.p.1. Instead the asymptotic properties can be characterized in a

distributional sense.

3.8.2 The ODE approach

In order to give a more specific characterization of the asymptotic convergence of

{x(k)}k within the set Bε(V), which is recurrent for the induced Markov process, we

need to use methods that rely on an ODE approach. According to these methods,

the behavior of the process as the step size ǫ approaches zero can be described by the

solution of a collection of ordinary differential equations (ODE’s), which represents

the mean dynamics. In fact, for our reinforcement scheme, the collection of ODE’s

will be
dxi(t)

dt
= E[Ri(α) · (αi − xi)|x(t)] , g(x), i ∈ I. (3.18)

It can be shown (applying Theorem 8.2.1 in [KY97]) that the smaller the step size, the

larger the amount of time that the stochastic process spends in a set of chain recurrent

points of the ODE (3.18). Essentially, the convergence here is in distribution and the

proof is based on weak convergence techniques.

Hence, in order to characterize the convergence of the stochastic process with

constant step size, it is essential to compute the set of chain recurrent points of the

ODE (3.18). In the case of two-player and two-action coordination games, and based
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on Proposition 3.8.1, it suffices to compute the chain recurrent points within Bε(V).

A similar approach is followed when the step size is diminishing satisfying the

general form

ǫ(k) =
1

ckν + 1
(3.19)

when ν ∈ (1/2, 1]. In this case, the process converges to a set of chain recurrent

points of the ODE (3.18) as Proposition C.1.1 shows. However, when the underlying

game is a two-player and two-action coordination game, Bε(V) is not necessarily the

unique invariant set of the ODE (3.18). Recall that in the two-player and two-action

coordination games, the stochastic process with λ = 0 has isolated stationary points

other than the vertices of the probability simplex. Convergence to such a point can

be excluded when λ = 0, based on the martingale convergence theorem, as has been

already shown. However, when λ > 0, computing the exact sign of ∆Ri in the

vicinity of that point is a quite complicated procedure. Other functions may be more

appropriate, however it is still part of an ongoing work.

3.8.3 Convergence analysis for diminishing step size

Consider a step size sequence as defined by (3.19). In that case, we wish to give

some more specific convergence properties based on the ODE methods for stochastic

approximations. First, we observe the following.

Proposition 3.8.2 Let two automata play a game Γ with |A1| = |A2| = 2 actions

and two pure strict Nash equilibria. Let both automata apply the L̃R−I scheme with

step size ǫ(k) > 0 such that
∑

k ǫ(k) = ∞, and assume that condition (3.15) is also

satisfied. For any ε > 0 and for sufficiently small λ > 0, the set Bε(V) is invariant

for the ODE (3.18).
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Proof. Let us define the nonnegative function

V (x) =
∑

i∈I

Ri,max − Ri(x),

where Ri,max is the upper bound of the payoff function of agent i. Note that

dV (x)

dt
= −

∑

i∈I

dRi(x)

dt

= −
∑

i∈I

[∇xRi(x)]
T ·

dx(t)

dt

= −
∑

i∈I

∑

s∈I

[∇xs
Ri(x)]

T ·
dxs(t)

dt

= −
∑

i∈I

∑

s∈I

[E[Ri(α1, α2, ..., αn)|αs = j, x(t)]]j∈As

T ·
dxs(t)

dt

where we use the fact that

∇xs
Ri(x) = [E[Ri(α1, α2, ..., αn)|αs = j, x]]j∈As

.

Also, by definition of the ODE (3.18), we have that

dxs(t)

dt
≡ E[Rs(α) · (αs − xs)|x], s ∈ I.

According to the definition of the first-order variational terms [∆Ri(k)]1 in equa-

tion (3.13), we have

[∆Ri(k)]1

=
∑

s∈I

∑

j∈As

E[Ri(α1, α2, ..., αn)|αs = j, x(k)]∆xsj(k)

= ǫ(k)
∑

s∈I

[E[Ri(α1, α2, ..., αn)|αs = j, x(k)]]j∈As
·E[Rs(α) · (αs − xs)|x(k)].
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By condition (3.15) and according to Claim 3.8.1, we see that for any given ε > 0

and for sufficiently small λ > 0, [∆Ri(k)]1 ≥ 0 for all x on the boundary of Bε(V).

Since ǫ(k) > 0 for k = 0, 1, 2, ..., we also have that

∑

s∈I

[E[Ri(α1, α2, ..., αn)|αs = j, x]]j∈As
· E[Rs(α) · (αs − xs)|x] ≥ 0

for all x on the boundary of Bε(V). Thus,

dV (x)

dt
≤ 0,

for all x on the boundary of Bε(V), which concludes the proof. �

Note that the ODE (3.18) might have other invariant sets besides Bε(V).

We can characterize the convergence properties of the learning automata game

based on the ODE method for stochastic approximations as described in Appendix C.

We first need to assume the following:

Assumption 3.8.1 The function g(x) is continuously differentiable on X .

This assumption is not restrictive. For example, in the coordination problems which

will be considered, the expected reward function will be continuously differentiable

with respect to the strategy x.

Proposition 3.8.3 (Diminishing step size: Convergence) Under Assumption

3.8.1, for bounded reward function and λ > 0, the sequence {x(k)} converges to an

invariant set of the ODE (3.18). Furthermore, let A ⊂ X be a locally asymptotically

stable set in the sense of Lyapunov for (3.18). Then P [limk→∞ x(k) ∈ A] > 0.

Proof. Note that the stochastic process satisfies Assumptions C.1.1, C.1.2, C.1.3

and C.1.4. Therefore, from Proposition C.1.1 follows that the stochastic process will
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converge to an invariant set of the ODE (3.18). Furthermore, according to the same

proposition, if x(k) is in some compact set in the domain of attraction of a locally

asymptotically stable set A infinitely often with probability ≥ ρ, then x(k)→ A with

at least probability ρ. However, because of the randomization in the action selection

that is induced by the mutation rate λ > 0, there is a positive probability that the

process is in some compact set in the domain of attraction of any locally asymptoti-

cally stable set A of the vector field g(x). �

Convergence to linearly unstable points of the ODE (3.18) can be excluded as

stated by the following proposition:

Proposition 3.8.4 (Diminishing step size: Nonconvergence) Let x∗ be any point

in X such that x∗ is a linearly unstable equilibrium point of the ODE (3.18). Then,

P [x(k)→ x∗] = 0.

Proof. The proposition is a direct consequence of Proposition C.2.1. �

3.9 Remarks

In this chapter, we presented the basic convergence properties of the reinforcement

learning scheme that we will use in the remainder of the dissertation. The rein-

forcement scheme is a small modification of the reward-inaction scheme of learning

automata. We distinguished among two different forms of the reinforcement scheme:

the unperturbed and the perturbed scheme. The main reason we introduced the per-

turbed learning algorithm is the fact that it allows for equilibrium selection, as it will

become obvious in the following chapter.

For the unperturbed scheme, it was shown that the learning algorithm (with

either constant or diminishing step size sequence) converges to the set of vertices of
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the probability simplex w.p.1 under certain conditions on the reward function. We

showed that a special class of two-player and two-action coordination games always

satisfy these conditions. For the perturbed scheme with constant step size, and for

the same class of two-player and two-action coordination games, it was shown that

any small neighborhood of the set of vertices is a recurrent set of the induced Markov

process. If the step size sequence diminishes to zero, then this set is an invariant set

of the corresponding mean dynamics. Further conclusions about local convergence

properties within this invariant set were also derived based on existing results in

stochastic approximations.
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CHAPTER 4

Distributed Dynamic Reinforcement of Efficient

Outcomes in Multiagent Coordination

4.1 Introduction

In this chapter, we analyze the asymptotic behavior of a class of the perturbed learn-

ing dynamics introduced in Section 3.8 under “dynamic reinforcement.” Unlike tradi-

tional reinforcement learning, agents using dynamic reinforcement use a combination

of long term rewards and recent rewards to construct myopically forward looking

action selection probabilities.

We analyze the long term stability of the learning dynamics for general games

with pure strategy Nash equilibria and specialize the results for coordination games

and distributed network formation. Prior work [SA05] has shown how such dynamic

reinforcement can enable convergence to mixed strategy equilibria. Unlike those re-

sults, the focus here is how dynamic reinforcement can influence equilibrium selection,

particularly in coordination games. In this class of problems, more than one stable

equilibrium (i.e., coordination configuration) can exist. We show that dynamic rein-

forcement can be used as an equilibrium selection scheme. Moreover, only a single

agent is able to destabilize an equilibrium in favor of another by appropriately ad-

justing its dynamic reinforcement parameters. This sort of single agent sensitivity

also has implications for agent based simulations.

We compare the equilibrium selection properties of the dynamic reinforcement
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algorithm with existing results for coordination games. Prior work by [You93] and

[KMR93] on coordination games with 2 agents and 2 actions when best-reply dy-

namics are applied has shown that the risk-dominant equilibrium1 is the only robust

equilibrium when agents’ decisions are subject to small mistakes (mutations). That

is, the risk-dominant equilibrium is the long-run prediction of the perturbed process

when the mutation rate approaches zero. The resulting equilibrium selection under

the present dynamic reinforcement need not be determined by either payoff or risk

dominance or both. A related result [BL96] has shown that it is possible to find small

mutation rates so that any long-run prediction is possible. However, these specif-

ically tailored perturbations are state dependent and uniformly distributed across

population. By contrast, dynamic reinforcement affects equilibrium selection without

modifying the information available to each agent.

We also illustrate the results in distributed network formation with three nodes,

where each node establishes recursively links with other nodes. For the case of three

agents, we illustrate how a network formation game can be designed so that certain

desirable configurations are efficient, while non-efficient equilibria can be destabilized

by the proposed dynamic reinforcement. The more general case (of more that three

agents) will be analyzed in Chapter 5.

4.2 Motivation

4.2.1 Coordination games

As discussed in Section 1.1.1, several coordination problems can be analyzed by coor-

dination games, a branch of game theory problems that has been studied by [Sch06].

Recall that we defined coordination games as coordination problems were agents’

interest is to achieve uniformity of actions by each doing whatever the others will

1See Section 2.2.3.
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do. In coordination games uniform combinations of actions are Nash equilibria, i.e.,

situations in which no agent can be better off had it decided to act otherwise alone.

There are more restrictive classes of coordination problems, depending on the level

of coincidence of interest among agents. For example, in the game of Table 4.1(a),

there is perfect coincidence of interest (pure coordination) [Sch06], while in the game

of Table 4.1(b) there is no perfect coincidence of interest. However, the latter game

belongs to the class of games with aligned interests as defined in Section 3.7.

2.A 2.B
1.A 5, 5 1, 1
1.B 1, 1 2, 2

(a)

2.A 2.B
1.A 5, 5 1, 3
1.B 3, 1 3, 3

(b)

Table 4.1: (a) The Typewriter game, (b) The Stag-Hunt Game

Both coordination games of Table 4.1 has drawn a lot of attention in social sciences

since several social phenomena can be modeled by them. The Typewriter game can

model the adoption of new technologies, where it is of common interest to use a

compatible technology even though there might be a better one. The Stag-Hunt

game is a more general game which can model the adoption or modification of the

social contract for mutual benefit [Sky02]. Intuitively, in this setting each agent has

two options, (A) to devote energy to instituting the new social contract, or (B) not.

If everyone takes the first action, the social contract equilibrium is achieved (A,A),

and if everyone takes the second action, the state of nature equilibrium results (B,B).

But the second course carries no risk, while the first does.

An important question in social sciences is how we can get from the risk-dominant

equilibrium (B,B) to the payoff-dominant equilibrium (A,A).2 Although games are

usually analyzed in either a static setting (where the game is played only once) or in

a dynamic setting, the first approach has little to say about how agent’s beliefs about

2See definitions in Section 2.2.3.
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what others will do change. As we discussed in Section 2.3, most of the current work

in learning dynamics show that risk-dominant equilibrium is the most reasonable

choice.

4.2.2 Distributed network formation

Although coordination problems have drawn a lot of attention in social sciences, they

are also present in several practical settings. For example, in sensor networks liter-

ature, one of the greatest challenges is to design protocols that guarantee an energy

efficient configuration, since the major part of energy is consumed in transmitting

signals. The question that arises is: how efficient networks can be reinforced in a

distributed and adaptive fashion?

The problem of network formation can be modeled as a strategic interaction among

nodes. Here nodes can be thought of as decision makers who have discretion over

establishing omnidirectional links with other nodes. In a general setting, we may

assume that nodes are sources of benefits (or information) that can be tapped through

directed or indirected links, while the establishment of a link is costly. Agents may

establish as many links as they want, however, they would prefer (due to their rational

nature) to have access to as many agents as possible but with the minimum number

of established links.

Such a strategic interaction setup of the network formation problem corresponds

to the connections model of [JW96] and has been used to describe several economic

and social contexts such as the transmission of information. Such a model exhibits

several Nash equilibria. For example, in case of three nodes, and assuming that the

benefit and cost associated to each link is constant among agents, there are two Nash

equilibria which are shown in Figure 4.1. Under these conditions, it will be preferable

to be able to guarantee convergence to network (a), since every node has access to

the benefits of every other node with the minimum possible number of links.
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1

2 3
(a)

1

2 3
(b)

Figure 4.1: Nash equilibria in case of the connections model of [JW96].

4.3 The reinforcement learning algorithm

We will model an agent i in a set of agents I , {1, 2, . . . , n} as a learning automaton

which can take actions in the set Ai , {1, 2, . . . , |Ai|}. At each time k ∈ {0, 1, 2, . . .},

agent i interacts with the unknown environment (i.e., other agents) by selecting one

action, αi(k) ∈ Ai, and receives a reward, Ri(α(k)), which depends on the actions of

all agents, α(k) = (α1(k), ..., αn(k)).

We assume that each agent i “learns” via the perturbed learning algorithm L̃λ
R−I ,

introduced in Section 3.8. This algorithm is written recursively as

xi(k + 1) = xi(k) + ǫ(k) ·Ri(α(k)) · [αi(k)− xi(k)], (4.1)

where xi(k) is the strategy of agent i at time k. A strategy is a vector of probabilities

[xij(k)]j∈Ai
that agent i assigns to his selecting actions 1 through |Ai|. Accordingly,

xi(k) belongs to the probability simplex ∆(|Ai|).

Agent i chooses action j at time k with probability

(1− λ)xij(k) + λ/ |Ai| ,

where λ ≥ 0 models possible perturbations in the decision making process, also called

mutations [KMR93, You93]. We will associate actions {1, 2, ..., |Ai|} with vertices of

the simplex,
{

e1, ..., e|Ai|

}

. If agent i chose action j at time k, then αi(k) = ej in
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equation (4.1).

We assume that the step size sequence satisfies

ǫ(k) ,
1

k + 1
. (4.2)

Such model is similar to the so-called “anticipated utility” model: “each period the

agent makes decisions based on his beliefs, treating his beliefs as constant, and then

updates the beliefs upon observing outcomes.”

In all applications considered here, rewards are strictly positive and bounded.

Even if rewards are nonpositive, they can be always normalized to the positive axis.

Therefore, we assume:

Assumption 4.3.1 (Strictly positive rewards) For every i ∈ I, the reward func-

tion Ri(·) satisfies 0 < Ri(α(k)) < Ri,max for any action profile α(k) and some

Ri,max > 0.

4.4 Analysis

The asymptotic convergence properties of the perturbed reinforcement scheme L̃λ
R−I

with diminishing step size was described in Section 3.8.3. In this framework, we

showed by Proposition 3.8.3 that the reinforcement scheme converges to an invariant

set of the set of ordinary differential equations:

ẋi = gi(x) , ri(x)− Ri(x) · xi,

where

ri(x) , E[Ri(α(k))αi(k)|x(k) = x] ∈ R
|Ai|
+ ,

Ri(x) , E[Ri(α(k))|x(k) = x] ∈ R+.
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The above set of ODE’s can be written more compactly as

ẋ = g(x) , col{gi(x)}i∈I . (4.3)

where col{A} denote the column vector of the elements of a finite set A.

Moreover, again according to Proposition 3.8.3, there is a positive probability that

the reinforcement scheme converges to a locally stable set (in the sense of Lyapunov)

of the ODE (4.3). It was also shown by Proposition 3.8.4 that there is probability

zero that the reinforcement scheme will converge to a linearly unstable point of the

ODE (4.3).

In this section, we are going to analyze the local stability properties of the sta-

tionary points of the ODE (4.3), since stationary points are invariant sets. This way,

we can derive conclusions regarding convergence in several classes of coordination

problems.

4.4.1 Characterization of the stationary points

Let x∗ ∈ S be a candidate stationary point of the ODE (4.3). In order to characterize

the stationary points, we define vi(j, x
∗) as the expected reward of agent i given that

it selects action αi = j ∈ Ai and every other agent follows x−i = x∗−i, where −i

denotes the complementary set I\i, i.e.,

vi(j, x
∗) , E{Ri(α1, α2, ..., αn)|αi = j, x−i = x∗−i}. (4.4)

The stationary points are characterized by the following proposition.

Proposition 4.4.1 (Stationary points) A strategy profile x∗ = (x∗1, . . . , x
∗
n) is a

stationary point of the ODE (4.3) if and only if, for every agent i ∈ I, there exists a

constant ci > 0, such that for any action j ∈ Ai, x
∗
ij > 0 implies vi(j, x

∗) = ci.
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Proof. For some agent i ∈ I, let x∗i be a (possibly mixed) strategy, such that x∗ij > 0

for some j ∈ Ai. The strategy profile x∗ will be a stationary point of the ODE (4.3)

if and only if for any agent i ∈ I the identity

E[Ri(α)(αi − xi)|xi = x∗i ] = 0

holds, which, componentwise, can be written as,

vi(q, x
∗)x∗iq −

∑

j∈Ai

vi(j, x
∗)x∗ijx

∗
iq = 0 for all q ∈ Ai

or, equivalently, for all q ∈ Ai such that xiq > 0,

vi(q, x
∗)−

∑

j∈Ai

vi(j, x
∗)x∗iq = 0 for all q ∈ Ai.

The above linear system of equations has a solution if and only if vi(q, x
∗) = ci for

some positive number ci for all q ∈ Ai. �

An immediate consequence of the above proposition is that for λ = 0, any pure

strategy profile is a stationary point of the stochastic iteration.

Proposition 4.4.2 (Pure Strategies) For λ = 0, any pure strategy profile x∗ =

(x∗1, x
∗
2, ..., x

∗
n), such that x∗i is a vertex of the probability simplex for all i ∈ I, is a

stationary point of the ODE (4.3).

Proof. According to Proposition 4.4.1 and for λ = 0, any strategy profile x∗ =

(x∗1, · · · , x
∗
n), such that x∗i is a vertex of the probability simplex (pure strategy), is

a stationary point of the ODE (4.3), since the support of a pure strategy is a single

action. �
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Vertices cease to be equilibria for λ > 0. The following proposition provides the

sensitivity of pure strategy equilibria to small values of λ.

Proposition 4.4.3 (Sensitivity of pure strategies) For any pure strategy profile

x∗, and for sufficiently small λ > 0, there exists a unique continuously differentiable

function w∗ : R+ → R
|A|, such that limλ→0 λw

∗(λ) = 0, and

x̃ = x∗ + λw∗(λ)

is a stationary point of the ODE (4.3).

Proof. Let vi(j, x̃) be the conditional reward (4.4) of agent i evaluated at a point x̃

when it selects action αi = j ∈ Ai. For any agent i ∈ I and any action s ∈ Ai, the

corresponding entry of the vector field is

gis(x̃) = vi(s, x̃)[(1− λ)x̃is + λ/ |Ai|]−
∑

q∈Ai

vi(q, x̃)[(1− λ)x̃iq + λ/ |Ai|]x̃is. (4.5)

Consider any pure strategy profile x∗, and take x̃ = x∗+ν, for some ν ∈ ×i∈IR
|Ai|.

Substituting x̃ into (4.5), yields

gis(ν, λ) = vi(s, x̃) [(1− λ)(x∗is + νis) + λ/ |Ai|]

−
∑

q∈Ai

vi(q, x̃)
[

(1− λ)(x∗iq + νiq) + λ/ |Ai|
]

(x∗is + νis).

Note that gis(0, 0) = 0, since x∗ is a stationary point of the unperturbed dynamics.

Moreover, the partial derivatives of gis evaluated at (0, 0) are:

∂gis(ν, λ)

∂νis

∣

∣

∣

∣

(0,0)

= vi(s, x̃)(1− x
∗
is)−

∑

q∈Ai

vi(q, x̃)x
∗
iq,
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∂gis(ν, λ)

∂νiq

∣

∣

∣

∣

(0,0)

= −vi(q, x̃)x
∗
is, for all q ∈ Ai\s.

The Jacobian matrix with respect to ν has full rank if we exclude the trivial

case that every action has the same expected reward. Then, by implicit function

theorem, there exists a neighborhood D of λ = 0 and a unique differentiable function

ν∗ : D → R
|A| such that ν∗(0) = 0 and g(ν∗(λ), λ) = 0, for any λ ∈ D.

Also, since ν∗(·) is continuously differentiable and ν∗(0) = 0, we may write

ν∗(λ) = λw∗(λ), for some unique continuously differentiable function w∗(·) of λ in

D. Moreover, for sufficiently small λ > 0, we can show that λw∗(λ) ≈ λw∗(0) and

1Tw∗
i (0) = 0 for all i ∈ I, which implies that x̃i ≈ x∗i + λw∗

i (0) ∈ ∆(|Ai|). �

In other words, Proposition 4.4.3 states that a sufficiently small perturbation λ in

the decision process moves the stationary point away from the pure strategy by an

order of λ.

4.4.2 Example: Stationary points in a symmetric game

Table 4.2 presents a symmetric game of two agents (n = 2) and two actions (m = 2).

In this matrix, the rewards of agent 1 are given by the first entry of each block, and

the rewards of agent 2 are given by the second entry.

2.A 2.B
1.A a, a b, c
1.B c, b d, d

Table 4.2: The symmetric game

We are particularly interested in the case where a > c > 0 and d > b > 0. Then

the game is a coordination game, since agents receive the maximum possible reward

if and only if they coordinate. In particular, the action profiles (A,A) and (B,B)

provide higher reward than (A,B) or (B,A). If a > d (or d > b), then the action
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profile (A,A) (or (B,B)) is the payoff-dominant equilibrium. Moreover, according

to the definition of the risk-dominant equilibrium in Section 4.2.1, a− c > d − b (or

a− c < d− b) implies that (A,A) (or (B,B)) is the risk-dominant equilibrium.

According to Proposition 4.4.2 for λ = 0, any pure strategy profile is a station-

ary point of the ODE (4.3). The four pure strategy stationary points in the above

coordination game are (A,A), (A,B), (B,A) and (B,B). Moreover, according to

Proposition 4.4.1 there is also a mixed strategy stationary point.

4.4.3 Local asymptotic stability (LAS)

Having characterized the stationary points of the ODE (4.3), we will describe locally

the stability properties of these points. We will first focus on the case λ = 0, which

will give a clear picture about the local stability of the stationary points in the

coordination games.

Proposition 4.4.4 (LAS - unperturbed system) For λ = 0, let x∗ = (x∗1, . . . , x
∗
n)

be a stationary point of the ODE (4.3), such that for each i ∈ I there exists j∗ =

j∗(i) ∈ Ai for which x∗i = ej∗, i.e., x∗i is a vertex of the probability simplex. Let

vi(·, x∗) be the conditional reward (4.4) of agent i evaluated at x∗. Under Assump-

tion 4.3.1, the stationary point x∗ is a locally asymptotically stable point of the ODE

(4.3) if, for each i ∈ I, vi(j
∗, x∗) > vi(s, x

∗) for all s ∈ Ai\j∗.

Proof. Let x∗ = (x∗1, . . . , x
∗
n) be a stationary point such that for each i ∈ I there

exists j∗ = j∗(i) ∈ Ai. Define the Lyapunov function

V (x) =
1

2
(x− x∗)T(x− x∗).
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Differentiating V (x(t)) along solutions of (4.3) results in

V̇ (x) = (x− x∗)Tg(x) =
∑

i∈I

(xi − x
∗
i )

Tgi(x).

Note that in order to characterize the behavior of V̇ (·) about x∗, it suffices to analyze

its behavior separately on each agent’s strategy xi, i ∈ I, while x−i ≈ x∗−i.

For some x̃i ∈ ∆(m) and ε > 0, let

xi = (1− ε)ej∗ + εx̃i

be a perturbation of the agent i’s strategy. Finally, let vi(·, x∗) be the conditional

rewards vector (4.4) evaluated at x∗.

For sufficiently small ε,

V̇ (x) =
∑

i∈I

∑

q∈Ai

(xiq − x
∗
iq)(riq(x)− Ri(x)xi(q))

≈
∑

i∈I

∑

q∈Ai\j∗

(εx̃iq)
2[vi(q, x

∗)− vi(j
∗, x∗)]

+ε2(1− x̃ij∗)
∑

s∈Ai

[vi(s, x
∗)− vi(j

∗, x∗)]x̃is

plus higher order terms in ε. Therefore, vi(j
∗, x∗) > vi(s, x

∗) for all s 6= j∗ implies

that V̇ < 0 for sufficiently small ε. �

It turns out that the condition vi(j
∗, x∗) > vi(s, x

∗), s 6= j∗ implies that x∗ is a

strict Nash equilibrium3. Therefore, any strict Nash equilbrium is a locally asymp-

totically stable point of the ODE (4.3).

3See Definition 2.2.2.
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If we let λ > 0, then the stationary points of the ODE (4.3) move slightly away

from the pure strategy profiles as Proposition 4.4.3 indicates. In this case, we can

assess stability as follows.

Proposition 4.4.5 (LAS - perturbed system) For sufficiently small λ > 0, let x̃

be a stationary point of the ODE (4.3), where x̃i = x∗i +λw
∗
i for all i ∈ I, with x∗i = ej∗

for some j∗ = j∗(i) ∈ Ai and w∗
i defined according to Proposition 4.4.3. Let vi(·, x̃)

be the conditional rewards vector (4.4) evaluated at x̃. Under Assumption 4.3.1, the

stationary point x̃ is a locally asymptotically stable point of the ODE (4.3) if and only

if, for each i ∈ I, vi(j
∗, x̃) > vi(s, x̃) for all s ∈ Ai\j∗.

Proof. This theorem will follow directly as a special case of the forthcoming Theorem

4.5.1. �

Proposition 4.4.6 In the framework of Proposition 4.4.5, P [limk→∞ x(k) = x̃] > 0

if, for each i ∈ I, vi(j
∗, x̃) > vi(s, x̃) for all s ∈ Ai\j∗, i.e., x̃ is a strict Nash

equilibrium. Instead, if there exist i ∈ I and s ∈ Ai\j∗ such that vi(j
∗, x̃) < vi(s, x̃),

then P [limk→∞ x(k) = x̃] = 0.

Proof. This is a direct consequence of Propositions 3.8.3, 3.8.4, and 4.4.5. �

For example, if we consider the symmetric game of Table 4.2 with a > d > b > 0

and b = c, then the game is a coordination game and there are two locally stable

stationary points (A,A) and (B,B) which correspond to the two strict Nash equilibria

of the game. For the perturbed (λ > 0) system, we will see that the equilibria

associated with the vertices (A,B) and (B,A) are linearly unstable. This coordination

game also has a mixed strategy stationary point which is unstable as well.
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To illustrate these conclusions, consider the case a = 4, b = c = 1 and d =

2. Assume that both agents 1 and 2 update their strategies based on (4.1). The

solution of the ODE (4.3) for some randomly selected initial condition in the domain

of attraction of (B,B) is shown in Fig. 4.2 for λ = 0.01. In this figure, we can see

that convergence to the locally stable stationary point (B,B) is established.
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Figure 4.2: Solution of the ODE (4.3) for initial conditions x1(0) = (0.2, 0.8),
x2(0) = (0.2, 0.8), when the reward function is defined by Table 4.2 for a = 4,
b = c = 1, d = 2, and λ = 0.01.

4.5 Dynamic reinforcement

4.5.1 Approximate derivative action

So far, the decision (action) vector of agent i at time k, ai(k), depends only on the

probability distribution xi(k). We would like to explore the case where the decision

of each agent i is also affected by a dynamic processing of the probability distribution

xi(k).

Assume that a control input ui(k) also affects the decisions of agent i. Since the
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algorithms presented here are decentralized, the control input ui(k) should not make

use of the histories of other agents. In particular, suppose that the beliefs are updated

by (4.1), while the action vector of agent i depends not only on the state vector, xi(k),

but also on a control input ui(k), such that:

E[αi(k)|xi(k)] = Π∆{(1− λ)(xi(k) + ui(k)) + λ/m},

for some λ > 0.

One possible dynamic reinforcement scheme which is akin to derivative action in

classical control is to make use of the changes in xi(k). A standard controls interpre-

tation is that agents use derivative action to “predict” more rewarding outcomes. A

similar approach was investigated by [SA05] as an approach to enable stabilization

of mixed equilibria in learning in games. The intention here is different. Instead of

using derivative action to stabilize a mixed equilibrium, our goal is to use derivative

action to enforce convergence to an efficient pure equilibrium.

In particular, we consider approximate derivative action (ADA) defined as follows.

For each agent i ∈ I, we introduce two additional state vectors yi(k) ∈ ∆(|Ai|) and

ρi(k) ∈ R+, which are updated according to the recursions

yi(k + 1) = yi(k) + ǫ(k) · (xi(k)− yi(k)), (4.6)

and

ρi(k + 1) = ρi(k) + ǫ(k) · (Ri(α(k))− ρi(k)), (4.7)

respectively. In words, for ǫ(k) = 1/(k + 1), yi(k) is the running average of the

strategy vector xi(k) and ρi(k) is the running average of the reward Ri(α(k)). Note

also that since xi(k) ∈ ∆(|Ai|) for all large k, then also yi(k) ∈ ∆(|Ai|) for all large
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k.

Now let

ui(k) = γi(ρi(k)) · (xi(k)− yi(k)),

for a function γi : R+ → R+. This additional control term is reinforcing recent changes

as reflected by the current xi(k) and its running average yi(k), scaled by a feedback

gain that in general will be assumed to be reward-dependent. This importance of this

dependence will become clear later on when we will discuss the asymptotic properties

of the stochastic iteration.

The action vector for each agent i ∈ I is then selected according to the rule

E[αi(k)|xi(k)] = Π∆{(1− λ)[xi(k) + γi(ρi(k)) · (xi(k)− yi(k))] + λ/ |Ai|}. (4.8)

This selection rule, in combination with the update recursion of (4.1), constitutes a

reinforcement scheme which we will call “dynamic reinforcement with approximate

derivative action.” This reinforcement scheme has an extended state vector

z(k) ,











x(k)

y(k)

ρ(k)











,

where x(k) is updated by (4.1), y(k) is updated by (4.6), ρ(k) is updated by (4.7)

and the action vector α(k) is selected according to (4.8).

4.5.2 Asymptotic stability of approximate derivative action

The asymptotic stability analysis of approximate derivative action (4.8) will be based

on the ODE method for stochastic iterations. These results will follow by applying
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suitably modified versions of Propositions 3.8.3–3.8.4. The relevant ODE is now











ẋ

ẏ

ρ̇











=











g(z)

x− y

Ri(z)− ρ











, (4.9)

where g(z) is defined as in (4.3) except that expectations over actions is now taken

according to the selection rule (4.8).

It is straightforward to check that the stationary points of the ODE (4.9) coincide

with the stationary points of ODE (4.3), since at the equilibrium z̃ = (x̃, ỹ, ρ̃), we

have x̃ = ỹ.

We need to check whether the asymptotic stability results of the recursion (4.1)

can change by appropriately selecting the feedback gain γi(·). The linearized dynamics

of the ODE (4.9) about a stationary point z̃ = (x̃, x̃, ρ̃) is:

d

dt











δx(t)

δy(t)

δρ(t)











= Ãλ,γ ·











δx(t)

δy(t)

δρ(t)











(4.10)

where the perturbation δx(t) = (δx1(t), . . . , δxn(t)) is such that

xi(t) = x̃i +Nδxi(t), i ∈ I, (4.11)

for some |Ai| × (|Ai| − 1) orthonormal matrix N which spans the null space of the

row vector 1T ∈ R
|Ai|, i.e.,

1TN = 0 and NTN = I. (4.12)
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Similarly, δy(t) = (δy1(t), . . . , δyn(t)), where

yi(t) = ỹi +Nδyi(t), i ∈ I.

Finally, δρ(t) , ρ(t)− ρ̃.

The matrix N is introduced to reflect that solutions evolve over the probability

simplex, and so have a restricted degree of freedom.

Proposition 4.5.1 (LAS of ADA) For sufficiently small λ > 0, let z̃ = (x̃, x̃, ρ̃)

be a stationary point of the ODE (4.9), where x̃i = x∗i + λw∗
i for all i ∈ I, with

x∗i = ej∗ for some j∗ = j∗(i) ∈ Ai and w∗
i defined according to Proposition 4.4.3.

Let Assumption 4.3.1 hold. There exist λ-independent matrices Aγ
ii, B

γ
ii, i ∈ I, and

matrices W λ,γ, V λ,γ, with

lim
λ→0

λW λ,γ = 0, lim
λ→0

λV λ,γ = 0,

such that the linearization (4.10) of the ODE (4.9) about (x̃, x̃, ρ̃) has system matrix

of the form4

Ãλ,γ =











N O

O N

I I











T 









Aλ,γ Bλ,γ O

I −I O

× × −I





















N O

O N

I I











, (4.13)

with

Aλ,γ = diag {Aγ
ii}i∈I + λW λ,γ,

Bλ,γ = diag {Bγ
ii}i∈I + λV λ,γ ,

and N = diag{N, ..., N} where N is of appropriate dimension. Furthermore, there

4The symbol × corresponds to terms that do not affect the analysis.
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exists an |Ai| × |Ai| unitary matrix Ui such that

Aγ
ii = Ui





−vi(j
∗, x̃) row{−(1 + γi(ρ̃i))vi(s, x̃)}s 6=j∗

0 diag{−vi(j
∗, x̃) + (1 + γi(ρ̃i))vi(s, x̃)}s 6=j∗



UT
i , (4.14)

and

Bγ
ii = Ui





0 row{γi(ρ̃i)vi(s, x̃)}s 6=j∗

0 diag{−γi(ρ̃i)vi(s, x̃)}s 6=j∗



UT
i . (4.15)

Proof. See Appendix D.2.1. �

Based on Proposition 4.5.1 we can compute the range of values of the parameter

γi that guarantees stability of the pure strategy profiles for sufficiently small λ > 0.

Theorem 4.5.1 (Stability Range) Assume the hypotheses of Proposition 4.5.1 and

let vi be the conditional rewards vector (4.4) evaluated at the equilibrium z̃ = (x̃, ỹ, ρ̃)

with vi(j
∗, x̃) > vi(s, x̃) for every i ∈ I and s 6= j∗. For sufficiently small λ > 0, the

equilibrium z̃ will be a locally asymptotically stable stationary point of the linearization

(4.10) if and only if, for each agent i ∈ I, the derivative feedback gain satisfies

0 < γi(ρ̃i) <
vi(j

∗, x̃) + 1

vi(s, x̃)
− 1, ∀s 6= j∗. (4.16)

Proof. According to the definition of the linearization (4.10), the perturbed state

vector δxi of each agent i ∈ I satisfies

xi − x̃i = Nδxi ∈ null{1T},
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which implies that

xij∗ − x̃ij∗ = −1Tcol{xis − x̃is}s 6=j∗.

Accordingly, we have

yij∗ − ỹij∗ = −1Tcol{yis − ỹis}s 6=j∗.

Thus, the linearized dynamics (4.10) of agent i about z̃ = (x̃, ỹ, ρ̃) can be described

by the reduced state vector

δẑ = (δx̂, δŷ, δρ) , (col{δx̂i}i∈I , col{δŷi}i∈I , col{δρi}i∈I)

where δx̂i , col{xi(s) − x̃i(s)}s 6=j∗ and δŷi , col{yi(s) − ỹi(s)}s 6=j∗. Therefore, ac-

cording to Proposition 4.5.1, the evolution of the reduced state vector δẑi takes on

the form

d

dt
δẑ = Ãλ,γδẑi ,











Âλ,γ B̂λ,γ O

I −I O

× × −1











δẑi

with

Âλ,γ = diag
{

Âγ
ii

}

i∈I
+ λŴ λ,γ,

B̂λ,γ = diag
{

B̂γ
ii

}

i∈I
+ λV̂ λ,γ,

where

Âγ
ii , diag{−vi(j

∗, x̃) + (1 + γi(ρ̃i))vi(s, x̃)}s 6=j∗, i ∈ I
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B̂γ
ii = diag{−γi(ρ̃i)vi(s, x̃)}s 6=j∗, i ∈ I

and Ŵ λ,γ, V̂ λ,γ are matrices such that

lim
λ→0

λŴ λ,γ = 0, lim
λ→0

λV̂ λ,γ = 0.

Therefore, the spectrum of the linearization matrix Ãλ,γ , when λ = 0, is given by

eigÃ0,γ =
⋃

i∈I

eig





Âγ
ii Bγ

ii

I −I



 ∪ {−1}.

It is straightforward to show that for γi(ρ̃i) > 0 such that 1 + vi(j
∗, x̃) − [1 +

γi(ρ̃i)]vi(s, x̃) is small, the eigenvalues of Ã0,γ are complex numbers with real part

Re
{

eigÃ0,γ
}

= −
1

2
{1 + vi(j

∗, x̃)− [1 + γi(ρ̃i)]vi(s, x̃)}i,s 6=j∗ .

This implies that for sufficiently small λ > 0, the strategy profile z̃ will be locally

asymptotically stable if and only if condition (4.16) holds. �

Proposition 4.5.2 (ADA convergence) In the framework of Theorem 4.5.1, if the

derivative feedback gains satisfy (4.16) for all i ∈ I, then P{limk→∞ x(k) = x̃} > 0.

Instead, if there exist i ∈ I and s ∈ Ai\j∗ such that γi(ρ̃i) > (vi(j
∗, x̃) − vi(s, x̃) +

1)/vi(s, x̃), then P [limk→∞ x(k) = x̃] = 0.

Proof. This is a direct consequence of Propositions 3.8.3–3.8.4 and Theorem 4.5.1. �
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4.6 Applications

4.6.1 Equilibrium selection in identical interest coordination games

According to Proposition 4.5.2, each agent i, by applying approximate derivative

action, can selectively alter the stability properties of the Nash equilibria of a co-

ordination game. In particular, one agent, by appropriately defining the feedback

gain, may destabilize certain non-desirable equilibria. For example, in the case of

the Typewriter game of Table 4.1(a), the non-efficient equilibrium of (B,B) can be

destabilized.

Consider, for example, the payoff matrix of the coordination game of Table 4.2

with ab + b > dc + c. In that case, payoff- and risk-dominant equilibrium coincide,

which corresponds to the Typewriter game. According to Proposition 4.5.1, when

λ is sufficiently small, the only stable equilibria of the learning dynamics are small

variations of (A,A) and (B,B).

Since agents may not be aware of the current payoff matrix, varying the derivative

feedback gain allows them to experiment. In particular, suppose that both agents run

the stochastic iteration of (4.1) and that agent 1 applies approximate derivative action

with γ1(ρ̃1) ≡ γ > 0. According to Theorem 4.5.1 the coordination states (A,A) and

(B,B) are locally stable if and only if γ < (a − c + 1)/c and γ < (d − b + 1)/b,

respectively. Agent 1 is able to destabilize the non-efficient equilibrium (B,B) by

gradually increasing γ, since there is a range of gains that destabilizes (B,B), while

(A,A) remains stable. In particular, any γ such that (d− b+1)/b < γ < (a− c+1)/c

accomplishes that. We summarize this conclusion in the following claim:

Claim 4.6.1 (Dynamic Reinforcement in the Typewriter Game) Consider the

learning dynamics (4.1) with step size sequence (4.2) with two agents and two ac-

tions. Assume the payoff matrix of Table 4.2 with a > c > 0, d > b > 0, a > d and

ab+ b > dc+ c. For sufficiently small λ > 0, the learning dynamics exhibit stationary
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points x̃1 and x̃2 which are small variations of the two pure strategy profiles (A,A)

and (B,B), respectively. If agent i ∈ {1, 2} applies approximate derivative action

(4.8) with γi(ρi) ≡ γ for all ρi ∈ R+, such that (d − b + 1)/b < γ < (a − c + 1)/c,

then P{limk→∞ x(k) = x̃1} > 0 and P{limk→∞ x(k) = x̃2} = 0.

Proof. The proof is a direct application of Proposition 4.5.2. The condition ab+ b >

dc + c guarantees that there are feasible feedback gains that can destabilize (B,B)

while (A,A) is stable. �

Note that when b = c the condition ab+ b > dc+ c⇔ a+ b > d+ c which implies

that the equilibrium profile (A,A) risk-dominates (B,B). In general, however, this

is not the case.

Fig. 4.3 shows the solution of the ODE (4.9) when a = 5, b = c = 1 and d =

2. We also assume that agent 1 applies approximate derivative action with γ1 =

3.5. According to Claim 4.6.1, there is zero probability that the stochastic process

converges to (B,B) when 2 < γ1 < 5. For an initial condition that is very close

to the non-efficient equilibrium (B,B), Fig. 4.3 shows that the solution escapes the

non-efficient equilibrium, despite being initiated very close to it, and convergence

to (A,A) is attained. Also, in Fig. 4.4, a typical response of the stochastic iteration

(4.1) is shown, which illustrates that the process does not converge to the non-efficient

equilibrium.

Since in Theorem 4.5.1 there is no constraint on the number of agents or actions,

Claim 4.6.1 can be easily extended to the multiplayer case. Consider, for example,

the Typewriter game of three agents and two actions of Table 4.3.

It is straightforward to see that the conclusions of Claim 4.6.1 continue to hold,

where each agent i ∈ {1, 2, 3} is able to destabilize the non-efficient equilibrium

(B,B,B) by applying approximate derivative action (4.8) with γi(ρi) ≡ γ for all

ρi ∈ R+, such that (d− b+ 1)/b < γ < (a− c+ 1)/c. Note also that in the example
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Figure 4.3: The solution of ODE (4.9) with initial conditions x1(0) = x2(0) = (0, 1)
and y1(0) = (1, 0), when the reward function is defined by Table 4.2 for a = 5,
b = c = 1 and d = 2, while the decisions are taken according to (4.8) with λ = 0.01,
γ1 = 3.5 and γ2 = 0.

2.A 2.B
1.A 5, 5, 5 1, 1, 1
1.B 1, 1, 1 1, 1, 1

3.A

2.A 2.B
1.A 1, 1, 1 1, 1, 1
1.B 1, 1, 1 2, 2, 2

3.B

Table 4.3: The Typewriter game of 3 players and 2 actions

of Table 4.3, b = c = 1. In that case, the solution of the ODE, when agent 1 applies

approximate derivative action with γ = 3.5 is shown in Fig. 4.5.

4.6.2 Equilibrium selection in aligned interest coordination games

Similarly to the equilibrium selection in the Typewriter game, in the case of the Stag-

Hunt game of Table 4.1(b), the non-efficient (risk-dominant) equilibrium (B,B) can

also be destabilized by appropriately defining the feedback gain.

Note that in the case of the Typewriter game, a single agent is able to destabilize

the non-efficient equilibrium (B,B) by gradually increasing the feedback gain. Intu-
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Figure 4.4: A typical response of the stochastic iteration (4.1) with initial conditions
x1(0) = x2(0) = y1(0) = (0, 1), when the reward function is defined by Table 4.2 for
a = 4, b = c = 1 and d = 2, while the decisions are taken according to (4.8) with
λ = 0.01, γ1 = 3.5 and γ2 = 0.

itively, this is possible because the deviation cost from (B,B), d− b, is less than the

deviation cost from (A,A), a − c. However, in the case of the Stag-Hunt game this

is not the case. Instead, the deviation cost from (B,B) is larger than the deviation

cost from (A,A). Therefore, a feedback gain γi(ρi) that is constant for all ρi cannot

destabilize (B,B).

Let us consider, instead, a payoff-dependent feedback gain of the form

γi(ρi) ,
γ

ρκ
i

, (4.17)

where γ > 0 and κ > 1 are constants. Such a feedback gain is large when ρi is small,

and vice versa. Since the approximate derivative action can be thought of as a way

of exploiting more rewarding actions, it is natural to consider a small feedback gain

when the current payoff is large, and vice versa.

Claim 4.6.2 (Dynamic Reinforcement in the Stag-Hunt Game) Consider the
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Figure 4.5: The solution of ODE (4.9) with initial conditions
x1(0) = x2(0) = x3(0) = (0, 1) and y1(0) = (1, 0), when the reward function
is defined by Table 4.3, while the decisions are taken according to (4.8) with
λ = 0.01, γ1 = 3.5 and γ2 = γ3 = 0.

learning dynamics (4.1) with step size sequence (4.2) with two agents and two ac-

tions. Assume the payoff matrix of Table 4.2 with a > c > 0, d > b > 0, a > d and

a + b < d+ c. For sufficiently small λ > 0, the learning dynamics exhibit stationary

points x̃1 and x̃2 which are small variations of the two pure strategy profiles (A,A)

and (B,B), respectively. If agent i ∈ {1, 2} applies approximate derivative action

(4.8) with feedback gain (4.17), such that

κ >
log

(

a−c+1
d−b+1

· b
c

)

log
(

d
a

) (4.18)

and

dκd− b+ 1

b
< γ < aκa− c+ 1

c
, (4.19)

then P{limk→∞ x(k) = x̃1} > 0 and P{limk→∞ x(k) = x̃2} = 0.

90



Proof. For sufficiently small λ > 0, equilibrium profile (A,A) is linearly stable if and

only if

γi(a) < (a− c+ 1)/c⇔ γ < aκa− c+ 1

c
,

while equilibrium profile (B,B) is unstable if and only if

γi(d) > (d− b+ 1)/b⇔ γ > dκd− b+ 1

b
.

Therefore, the conclusion follows if γ satisfies condition (4.19) and

dκd− b+ 1

b
< aκa− c+ 1

c

which is equivalent to condition (4.18). �

Fig. 4.6 shows the solution of the ODE (4.9) when a = 5, b = 1, c = 4 and

d = 3. We also assume that agent 1 applies approximate derivative action according

to (4.17). According to Claim 4.6.2, when κ > 2.151 there exists γ for which the

stochastic process does not converge to (B,B). For example, if κ = 5, then for any

729 < γ < 3125, the equilibrium profile (B,B) is unstable, while (A,A) is stable.

For an initial condition that is very close to the non-efficient equilibrium (B,B),

Fig. 4.6 shows that the solution escapes the non-efficient equilibrium, despite being

initiated very close to it, and convergence to (A,A) is attained. Also, in Fig. 4.7, a

typical response of the stochastic iteration (4.1) is shown, which illustrates that the

process does not converge to the non-efficient equilibrium.
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Figure 4.6: The solution of ODE (4.9) with initial conditions
x1(0) = x2(0) = y1(0) = (0, 1), when the reward function is defined by Table
4.2 for a = 5, b = 1, c = 3 and d = 3, and agent 1 applies approximate derivative
action (4.8) with λ = 0.01 and γ1 defined by (4.17) with γ = 2000 and κ = 5.

4.6.3 Equilibrium selection in distributed network formation

We consider the problem of distributed network formation as introduced in Sec-

tion 4.2.2. We assume that nodes apply the learning algorithm of (4.1), where the

action set Ai for each agent includes all the possible combinations of neighboring

nodes (equivalently, links), i.e., Ai , 2Ni, where Ni is the set of neighboring nodes

of node i. For example, in the case of n = 3 agents of Figure 4.1, the set of actions

of agent 1 will be A1 = {{1}, {2}, {3}, {2, 3}}, where for example, action {1} implies

that agent 1 does not establish any link, and action {2, 3} implies that agent 1 creates

a link with both agents 2 and 3. Similarly to the previous analysis, we may define

an enumeration {1, 2, ..., |Ai|} of the actions in Ai. To minimize notation, the set Ai

will also denote the corresponding set of vertices {e1, ..., e|Ai|} in ∆(|Ai|).
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Figure 4.7: A typical response of the stochastic iteration (4.1) with initial conditions
x1(0) = x2(0) = y1(0) = (0, 1), when the reward function is defined by Table 4.2 for
a = 5, b = 1, c = 3 and d = 3, and agent 1 applies approximate derivative action
(4.8) with λ = 0.01 and γ1 defined by (4.17) with γ = 2000 and κ = 5.

We assume that agents apply the following variation of (4.1):

xi(k + 1) = xi(k) + ǫ(k) · [Ri(α(k))− Ci(αi(k))] · [αi(k)− xi(k)], (4.20)

where Ri : A → R+ is the reward of agent i that depends on the action profile

α = (α1, ..., αn) ∈ A , ×i∈IAi and Ci : Ai → R+ denotes the cost associated with

the links of agent i. We assume that the cost of establishing a link is always strictly

less than the benefits of that link, so that the empty network cannot be a Nash

equilibrium.

Here, we define the benefits of agent i, Ri(·), to be equal to the number of nodes

that are accessible to i through direct and indirect connections following the orienta-

tion of the graph. The cost function of agent i, Ci(·), is simply defined as constant c,

such that 0 < c < 1, for each link that is established by agent i.

It is straightforward to check that the asymptotic analysis of Section 4.4 can be
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applied here. Furthermore, the dynamic process exhibits multiple Nash equilibria.

For example, in the case of n = 3 agents, the wheel and the star network of Fig. 4.1

are Nash equilibria. In particular, the wheel network of Fig. 4.1(a) is a strict Nash

equilibrium (all eigenvalues of the linearized ODE about this equilibrium are strictly

negative), while the star network of Fig. 4.1(b) is a Nash equilibrium (all eigenvalues

of the linearized ODE about this equilibrium are non-positive).

According to Proposition Proposition 3.8.3, convergence to the star network is

not excluded. This problem fits to the Typewriter problem of Section 4.6.2. The

star network can be destabilized if either agent 2 or 3 in Fig. 4.1(b) applies the

approximate derivative action (4.8) with a small feedback gain, due to the fact that

the deviation cost for those agents is zero.

In particular, for i = 2 or i = 3 in the star network of Fig. 4.1(b), we have

vij∗ = 2 − c, where j∗ = j∗(i) corresponds to the current action, and maxs 6=j∗ vis =

2 − c. Therefore, according to Theorem 4.5.1, if agent i ∈ {1, 2, 3} applies dynamic

reinforcement with γi ≥ (2− c+ 1)/(2− c)− 1 ≡ 1/(2− c), then the star network is

linearly unstable. Accordingly, in the wheel network of Fig. 4.1(a), we have vij∗ = 2−c

and maxs 6=j∗ vis = 2−2c, which corresponds to the case of establishing two links. Thus,

if agent i ∈ {1, 2, 3} applies dynamic reinforcement with γi < (2−c+1)/(2−2c)−1 ≡

(1+c)/(2−2c), then the wheel network is locally asymptotically stable. We conclude

that:

Claim 4.6.3 (Dynamic Reinforcement in Network Formation) Consider the

learning dynamics (4.20) with step size sequence (4.2) with the network formation

framework presented here with n = 3 agents. For sufficiently small λ > 0, the learning

dynamics exhibit two stationary points x̃1 and x̃2, which are small variations of the

wheel and star network of Figs. 4.1(a)-(b), respectively. If agent i ∈ {1, 2, 3} applies

approximate derivative action (4.8) with γi(ρi) ≡ γ for all ρi ∈ R+, such that 1/(2−

c) ≤ γ < (1 + c)/(2 − 2c), then P{limk→∞ x(k) = x̃1} > 0 and P{limk→∞ x(k) =
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x̃2} = 0.

This result will be extended to the multiplayer case in Chapter 5.

4.7 Remarks

We considered the problem of distributed convergence to efficient outcomes where

agents have access only to their own prior actions and received rewards. We showed

that convergence to an efficient coordination structure (i.e., efficient global outcome)

can be reinforced by dynamic processing of only local information. This illustrates

how (unilateral) local decisions can affect the aggregate outcome of an evolutionary

process.

We used a simple form of dynamic processing, which reinforces recent changes

of the state from its running average. We showed that each agent by applying this

dynamic reinforcement scheme is able to destabilize non-efficient equilibria by ap-

propriately adjusting the derivative feedback gain. We specialized our results in

coordination games, where risk- and payoff-dominant equilibria might not coincide,

and we showed that destabilization of the non-efficient or risk-dominant equilibrium

is possible. We also illustrated the utility of such reinforcement scheme in a network

formation process, which will be analyzed in further detail in the next chapter.
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CHAPTER 5

Efficient Network Formation by Distributed

Reinforcement

5.1 Introduction

Recent research on social networks has shown how structure affects norm and attitude

formation in a society [Fri01]. Moreover, the efficiency of flow of information through

a social network has an important relationship with one of the most popular studies

of social networks, which is the study of centrality, social power and influence as a

function of the structure of, and positions in, social networks. Likewise, a challenge

in sensor networks is to design protocols that guarantee energy efficient network

formation, where the energy of transmitting signals is the major part of the energy

consumption [SGA00, ASS02]. In this paper, we wish to provide a dynamic framework

that will serve both as a design procedure for distributed convergence to a desirable

network and as a justification for the emergence of certain networks.

In particular, according to [Jac03], some questions addressed by the problem of

network formation are:

1. Which networks are likely to form when agents have the discretion to choose

their connections?

2. If there are several networks that are likely to emerge, how the likelihood of

emergence of each of these networks is related to the mechanism of interpersonal

interaction?
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3. How are such network relationships important in determining the outcome of a

process, such as information flow, attitude or norm formation?

4. How efficient are the networks that form and how does that depend on the way

agents interact locally?

In this chapter, we consider the problem of efficient network formation in a dis-

tributed fashion. To this end, we formulate network formation as a game of learning

automata, where each node corresponds to a different learning automaton. Accord-

ing to this formulation, agents can form and sever unidirectional links and derive

direct and indirect benefits from these links. Also, each agent’s choices depend on

its own previous links and past benefits, and link selections are subject to random

perturbations.

In the following sections, we first present a small review of different approaches

on formulating the problem of network formation in a distributed fashion. These

methods model network formation as a game where each agent has discretion over

its own links. Then, we proceed on characterizing the stability properties of the

proposed model. We illustrate the flexibility of the model to incorporate various

design criteria, including dynamic cost functions that reflect link establishment and

maintenance, and distance-dependent benefit functions. We show that the learning

process assigns positive probability to the emergence of multiple stable configurations

(i.e., strict Nash networks), which need not emerge under alternative processes such

as best-reply dynamics. We analyze the specific case of so-called frictionless benefit

flow, and show that a single agent can reinforce the emergence of an efficient network

through an enhanced evolutionary process known as dynamic reinforcement.

97



5.2 Network formation as a game

Our objective in this section is to analyze and compare different theoretical approaches

that have been proposed to address the problem of distributed network formation.

Based on the techniques used these approaches can be classified into the following

categories:

− Game-theoretic static models, where the problem of network formation is usually

modelled as the strategic interaction of several agents in an one-stage game.

− Game-theoretic dynamic models, where the problem of network formation is

modelled as a game which is played repeatedly.

− Social evolutionary models, where agents react adaptively to the circumstances

facing them.

Moreover, both static and dynamic models belong to the area of conventional

game theory and as we will see they can be distinguished into two subcategories:

− cooperative models, where mutual consent is needed to form a link. Because of

that, either some sort of coalitional equilibrium concept is required, or the game

needs to be an extensive form with a protocol for proposing and accepting links

in some sequence.

− noncooperative models, where agents are considered as opponents trying to es-

tablish those links that will maximize their own utility. In this case, mutual

consent is not required to form a link.

At a first sight, it seems that dynamic and evolutionary models are more useful

than static models, since they describe the mechanism under which a graph emerges.

However, some of the most important concepts in network analysis, such as pairwise

stability or efficiency of a graph were introduced in the framework of static models.
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5.2.1 Game-theoretic static models

Reference [Mye77] is probably one of the first important contributions to this litera-

ture. Myerson analyzes a cooperative game that is enriched by a network structure

describing the possibilities for communication or cooperation among different agents.

Agents can act as a coalition if and only if they are connected through links in the

network. While this idea constitutes an important step forward, it leaves several is-

sues unsolved. In particular, because the value (or reward) function is still defined on

coalitions and not on the network directly, the theory does not distinguish between

different networks that connect the same agents but differ in the way these agents

are connected. As a consequence, many interesting details of the network formation

process, for example costs and benefits of particular links, cannot be analyzed by the

model of [Mye77].

Reference [AM88] were the first to take an explicit look at network formation in a

strategic context, where agents had discretion over their connections. In particular,

reference [AM88] were the first to model network formation explicitly as a game, and

did so by describing an extensive form game for the formation of a network in the

context of cooperative games with communication structures. In their game, agents

sequentially propose links which are then accepted or rejected. The extensive form

game begins with an ordering over possible links. The game is such that each pair

of agents decide on whether or not to form a link knowing the decisions of all pairs

coming before them, and forecasting the play that will come after them. A decision to

form a link is binding and cannot be undone. In terms of its usefulness as an approach

to modeling network formation, this game has some nice features to it. However, the

extensive form makes it difficult to analyze beyond very simple examples and the

ordering of links can have a non-trivial impact on which networks emerge. Moreover,

one of the most important theoretical debate stemming from [AM88] is about the

potential conflict between efficient and stable networks.
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Reference [Mye91] suggests a different game for modeling network formation. It

is in a way the simplest one that one could come up with, and as such is a natural

one. It can be described as follows:

− The strategy space of each agent is the list of other agents.

− Agents (simultaneously) announce which other agents they wish to be connected

to.

− A link is formed if and only if both agents select each other.

This game has the advantage of being very simple and directly capturing the idea

of forming links. Unfortunately, it has a large multiplicity of Nash equilibria. For

example, the empty network is always a Nash equilibrium, regardless of what the

payoffs are. The idea is that no agents suggests any links under the correct expectation

that no agents will reciprocate. This is especially unnatural in situations where links

result in some positive payoff. That means that in order to make use of this game,

one must really use some refinement of Nash equilibrium. Reference [DM97] discuss

some refinements in detail and the relationship of the equilibria to the concept of

pairwise stability.

Closer to the work of cooperative games, e.g., [Mye77], is the model of [JW96]. Its

main contribution lies in the introduction of an allocation rule that assigns a reward to

each agent that is not necessarily equal to its production. Based on the rewards, first

we can analyze the stability of the networks, and second we can distinguish between

the set of networks which are productively efficient, and those which are stable. This

work differs from the literature of cooperative games in some important respects:

(a) The value of the network can depend on exactly how agents are interconnected,

not just who they are directly or indirectly connected to; (b) This work focuses on

network stability and formation and its relationship to efficiency.

100



According to this model, agents directly communicate with those to whom they are

linked. Through these links, they also benefit from indirect communication from those

to whom their adjacent nodes are linked, and so on (connections model). Also, this

model uses two quantities, the value of the network (which is the sum of all produc-

tions) and the allocation rule (that assigns rewards to each agent). Reference [JW96]

tries to answer the question of whether there are strongly efficient graphs that are

pairwise stable. In other words, if we are free to structure the allocation rule in any

way we like, is it possible to find one such that there is always at least one strongly

efficient graph which is pairwise stable?

References [DM97] and [DJ00] are extensions of the work of [JW96]. In partic-

ular, reference [DM97] deals with the problem of constructing allocation rules for

which efficient networks are pairwise stable. Similarly, reference [DJ00] derives the

results of [JW96] for the case of directed communication networks. In particular, it

is investigated under which conditions (i.e., allocation rules) an efficient network is

individually stable in the context of directed network models. The reason of examin-

ing directed networks is that the set of applications for the directed and non-directed

models is quite different. Examples of directed network models include the produc-

tion and transmission of gossip and jokes, to information about job opportunities,

securities, consumer products, and even information regarding the returns to crime.

The above methods of modeling network formation are such that the network

formation process and the allocation of value among agents in a network are separated.

Reference [CM00] provides an interesting approach where the allocation of value (or

reward) among agents takes place simultaneously with the link formation, i.e., agents

may bargain over their shares of value as they negotiate whether or not to add a

link.1 The simultaneous bargaining over allocations and network formation can make

an important difference in conclusions about the efficiency of the networks that are

1See also [SN00] for similar approach.
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formed. The main difficulty with this approach is the specification of the bargaining

game, whose fine details (such as how the game ends) can be very important in

determining what networks form and how value is distributed.

5.2.2 Game theoretic dynamic models

Dynamic models analyze how networks emerge and how the decisions of agents con-

tribute to network formation. Some of the most important works in this area include

the models of [Wat01], [JW02a] and [BG00].

The majority of the static models discussed so far assume that links can be formed

if and only if there is mutual consent from both agents. This is primarily the reason

for which these models were called cooperative models. The models of [Wat01] and

[JW02a] belong to the same category of cooperative models. Instead, the model of

[BG00] introduces a noncooperative framework, where mutual consent is not necessary

for establishing a link.

Reference [Wat01] was the first to model network formation as a dynamic process

where networks are formed over time. The process begins with an empty network. At

each time a link is randomly identified. The current network is altered if and only if

the addition or deletion of the link would defeat the current network.2 Thus, agents

add or delete links through myopic considerations of whether this would increase their

payoffs.3 A network has reached a stable state if there is some time after which no

links would ever be added or deleted.

A difficulty with the idea of a stable state is that in some situations one can

get stuck at the empty network because any single link results in a negative value,

even though it might be that larger networks are valuable. If one can start at any

2Agents decide whether or not they add or severe a link by considering the corresponding reward.
Essentially, they play a best reply.

3Both agents need to agree but their decisions are myopic (i.e., an agent agrees if and only if it
benefits from establishing or severing the link.)
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network, then any stable network could be reached by an improving path. But without

specifying the process more fully, it is not clear what the right starting conditions

are. Introducing some stochastics into the picture solves this quite naturally.

The introduction of random perturbations to the formation process was first stud-

ied in [JW02a]. In this work, the framework of the model of [JW96] is altered, so

that the emergence of a network is the result of a dynamic process. In particular,

a dynamic model is introduced in which agents form and severe links based on the

improvement that the resulting network offers them relative to the current network.

Then, each agents receives a payoff based on the network configuration that is in

place. In other words, at each iteration agents myopically decide whether to form a

new link or severe an existing link. This decision is based on the improvement this

action will cause in their payoff.4 However, this process may result in cycles, where a

number of agents are repeatedly visited.

Thus, the main difference of the model of [JW02a] from the dynamic model of

[Wat01] is that the evolution of the network is now more natural. In [Wat01], at each

iteration, a link is randomly identified to be updated with uniform probability. If the

link already existed, then both parties can decide whether or not to sever this link.

If the link is not currently existing, then both parties can form the link (if it in their

interest to do so) and simultaneously sever any of their other links if both parties

agree. Instead, in [JW02a], any link can be updated at any iteration (i.e., there is no

central authority that decides which link will be updated). That is the main reason

for which cycles might occur.

Reference [JW02a] also examines the effect of several stochastic changes to a

network. For example such stochastic changes model situations where two agents will

add a link that they normally would not add, or a single agent will severe a link that

it normally would not sever. This random element (mutation) in the process will

4Note that the knowledge of the payoffs corresponding to each action is necessary in order to
make a decision.
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allow the dynamic formation process to deviate from an improving path.

These stochastic mutations in the formation process have several different inter-

pretations or justifications. They might represent errors made by the agents. They

might also represent a lack of knowledge on the part of the agents and be a form of

experimentation. Such mutations might also be due to exogenous factors that are

beyond the agents’ control.

This stochastic process defines a Markov chain and a set of evolutionary stable

networks can be derived as the effect of mutations goes to zero.5 The resulting

evolutionary stable networks depend on the problem’s setup, the value function and

the allocation rule. Reference [JW02a] also examines under which conditions stable

configurations are efficient.

Somewhat parallel to [JW02a], reference [BG00] develop models of network for-

mation that use tools from noncooperative game theory. Rather than considering

pairwise stability, reference [BG00] assumes that agents can form and sever links

unilaterally, i.e., no mutual consent is needed to form a link between two agents.

Clearly, this assumption changes the incentives of the agents, hence the analysis in

[BG00] differs substantially from the analysis in the models mentioned above. A cen-

tral implication of unilateral link formation is that it leads to the concept of Nash

equilibrium.

The main idea of the network model in [BG00] is similar to the connections model

of [JW96]. In particular, a finite set of agents is considered, where each agent is a

source of benefits that other can tap via the formation of costly pairwise links. A

link with another agent allows access to the benefits available to the latter via its

own links. The costs of link formation are incurred only by the agent who initiates

the link. This allows for modeling the network formation process as a noncooperative

game, where an agent’s strategy is a specification of the set of agents with whom it

5A network that is in the support of the limiting (as the probability of mutation goes to 0)
stationary distribution of the above-described Markov process is evolutionary stable.
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forms links. The links formed by agents define a social network.

An important result of this work is that Nash networks are either connected or

empty. With one-way flows a society with 6 agents can have upwards of 20, 000 Nash

networks representing more than 30 different architectures. This multiplicity of Nash

equilibria motivates an examination of a stronger equilibrium concept. Agents have

to choose among these different equilibria. This leads to study the process by which

agents learn about the network and revise their decisions on link formation, over time.

[BG00] use a version of the best-reply dynamic to study this issue. In particular,

the best-reply dynamic has the following features:

− Repeated game. The network formation game is played repeatedly, with agents

making investments in link formation in every period.

− Decision making. When making its decision an agent chooses a set of links that

maximizes its payoffs given the network of the previous period.

Two assumptions are made:

1. Agents exhibit inertia. There is some probability that an agent chooses the

same strategy as in the previous period. This ensures that agents do not

perpetually miscoordinate.

2. Randomization. If more than one strategy is optimal for an agent, then

it randomizes across the optimal strategies. This requirement implies, in

particular, that a non-strict Nash network can never be a steady state of

the dynamics.

The rules on agent behavior define a Markov chain on the state space of all net-

works; moreover, the set of absorbing states of the Markov chain coincides with the

set of strict Nash networks of the one-stage game. In the case of one-way and fric-

tionless6 flow of benefits, the only strict Nash architectures are the empty network

6Indirect rewards are not discounted.
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and the wheel, while in two-way flow of benefits the Nash architectures are the empty

network and the center-sponsored star.

5.2.3 Social evolutionary models

The models of network formation discussed in the previous sections (static or dy-

namic) make use of a game theoretic approach, where agents try to maximize their

reward by selecting appropriately their pairs in either a cooperative or noncooperative

manner.

As we have already mentioned, static models help us understand the notions

of pairwise stability and efficiency of a network, while dynamic models are more

important since they provide also the mechanism under which a network emerges.

However, as we commented in the model of [JW02a], the inclusion of uncertainties

(mutations) in the process of decision making was necessary, for several reasons, such

as to model either

1. a lack of knowledge on the part of the agents, or

2. experimentation, or

3. some errors that agents might make.

The third interpretation is more closely related to the opposition to the notion of

Nash equilibrium. Nash equilibrium play assumes that every agent is rational, and

this rationality is common knowledge. However, one could easily ask: “what happens

if a agent who is sure to play its equilibrium strategy does not do so?,” [BS92].

Evolutionary models incorporate both experimentation and decision errors in such

a way that the strong assumptions of Nash equilibrium play are not necessary. In these

models, agents will learn how to play the game through time by adaptively reacting

to the circumstances facing them. Moreover, these models can model situations of
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incomplete information, where agents can realize only their own reward, but not the

actions played by the other agents.

Some characteristic examples of evolutionary models of network formation are

[Zeg94], [Zeg95] and [SP00]. The model presented in [Zeg94, Zeg95] is a dynamic

model that transforms the choices of agents in a closed group (initially mutual

strangers with different characteristics) into the resulting structures of a friendship

network. Although it does not follow a game theoretic approach (as most of the

models do in economic networks), it does point out some of the important aspects

of the dynamic models discussed before, such as the incompatibility between stable

and efficient networks. This shows that the problem of network formation in either

an economic or sociological framework can be dealt in a unified way.

Returning to the model of [Zeg94, Zeg95], it is stressed out that having a model

that can predict future structure from an initial situation of mutual strangers is

important. Up to that time, the main literature in social networks was dealing only

with the effects of dyadic or triadic substructures in the final structure. However,

there was no theoretical model that explained how a dyadic or triadic substructure

was created.7 The goal of [Zeg94, Zeg95] was to model the process of friendship

formation between two agents in the surroundings of more people, in order to grasp

the dynamic process of the evolving friendship network. The behavioral rules of agents

are based on tension minimization with respect to the so-called issues. An issue is

any kind of dimension with respect to friendship relations on which the agents have

values, e.g. the need for social contact (the desired number of friends). The tension

function with respect to an issue measures the discrepancy between the value of this

issue from its desired value. So, a small tension corresponds to large utility. The

actions performed by the agents depend on the tension values attached to the issues.

7In the framework of balance theory, [Joh86] attempts to specify in more detail the link between
the micro and macro level, but defines the triad level as the micro level. However, decisions about
establishing or dissolving relations are not made at the triad level, but are the aggregate level of
such decisions.
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Let us consider only one issue, the number of friends that each agent has, [Zeg94].

A friendship (or link) between two agents can be established if and only if it is

mutual (reciprocated). In order to model the dynamic process, actions are taken in

a discrete-time manner and the following assumptions are made:

1. Every agent tries to optimally reduce its tension by randomly extending as many

choices as its unreciprocated links. If some of its choices are unreciprocated,

then it adds choices so that the total number of friends matches the desired one.

2. Information is not complete. An agent is not informed about any structural

characteristics of the network but does know the number of agents in the closed

set. An agent observes only actions and choices that concern itself.

3. The network is in equilibrium if all agents have tension 0, or those agents which

do not have the desired number of friends cannot lower their tension.

It is important to point out that this model assumes that agents do not know

the current state of the network, instead of the dynamic models presented in the

previous section, where agents try to improve their reward given the current state of

the network. For example in the model of [BG00] agents choose those actions that will

maximize their utility assuming that the other agents will play their previous actions,

which are known. Instead in the model of [Zeg94, Zeg95], each agent observes only

actions and choices that concern himself.

One of the characteristic results of [Zeg94, Zeg95] is that macro-level outcomes

are often not globally optimal as a result of the local optimization of the agents. In

particular, if we define the network tension as the summation of the tensions of all

agents, then the network tension can be viewed as a measure of global satisfaction.

A global optimum situation (network tension is zero) in which every agent would

be best off and have tension zero occurs only with small probability. This result is
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somehow similar to the results of other dynamic models, where efficient networks

(which corresponds to a global optimum) are not necessarily stable networks.

Reference [SP00] introduced a learning algorithm where agents play repeated

games in pairings determined by a stochastically evolving social network. The re-

wards received from each agent determine which interactions will be reinforced, and

the network structure emerges as a consequence of the dynamics of the agents’ learn-

ing behavior. The learning process belongs to the general class of Polya urn models,

as defined in [BST04], and it constitutes a learning automaton. A general description

of the dynamic process is the following:

− At each time interval, each agent chooses an agent based on some probability

distribution over all possible agents.

− When a link is created between two agents, an interaction takes place. Their

interaction can be modelled as a strategic form game, where agents try to max-

imize their own utility function over all possible actions.

− Based on their payoff, agents update their probability distribution for choosing

pairings according to some adaptive rule. For example, an agent who obtains

unsatisfactory results may choose either to change strategies or to change asso-

ciates.

Since the model of [SP00] is a learning algorithm,

1. agents are experimenting over their possible pairings and they reinforce the

most prosperous choices,

2. agents do not necessarily maintain a link for a large amount of time, which

agrees with the dissolution of friendship relationships in the real world,

3. the notion of Nash equilibrium is not necessary to describe the equilibrium

network structure.

109



Something that it is not examined in [SP00] is how such an adaptive scheme of

updating friendships can help us understand better the difference between stable and

efficient networks, or if it is possible to reinforce certain desirable global outcomes.

5.3 Our approach

Our work is motivated by the current research on social network formation, and, more

specifically, on how the emergence of specific forms of networks is associated with the

strategic framework of local interactions [Jac03].

Our approach is concerned with dynamic or evolutionary models, and is mostly

related to [DJ00, BG00, SP00, BL03]. In particular, we consider self-interested agents

that have the discretion of establishing or severing unidirectional links with neighbor-

ing agents based on myopic considerations. However, we drop the typical assumption

that agents are aware of the current network structure. Accordingly, agents are not

able to employ processes such as best-reply to an existing network configuration.

Rather, our model is payoff based. Agents can only measure derived benefits from

past decisions of forming or severing links. Agents will reinforce a link if it was ben-

eficial in the past and suppress it otherwise. These dynamics belong to the general

class of learning automata [NT89, NP94] and are motivated by related models of

human-like decision making [Art93].

The main difference with both [SP00] and [BL03] is in the reward function. In

[SP00, BL03] the reward function is based on the principle of reciprocity which models

social relationships such as friendship. Here instead we use the connections model of

[JW96]. According to this model, the benefits received from each agent can be viewed

as the information available from its direct and indirect links. In other words, agents

are rewarded for being connected to other agents, either directly or indirectly. Addi-

tional features of our model are a state-dependent cost function for the establishment
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and maintenance of links and a distance-dependent reward function for information

benefits. This framework can model various economic and social contexts, such as

the production and transmission of information, consumer products, etc. Models of

this form (that also assume the consent of both parties) include the static model of

[JW96] and the dynamic models of [Wat01, JW02a].

We will show that our model (i.e., the combined evolutionary process, reward

functions, and cost functions) assigns positive probability to the emergence of multiple

stable configurations (Nash networks). When the aforementioned state-dependent

cost function is considered, we show that the set of strict Nash networks emerging

may be larger than the one arising from best-reply dynamics considered in [BG00].

A specific case of our reward functions is “frictionless information flow”, i.e.,

where benefits are derived from being connected to other agents and are not distance

dependent. For this special case, we demonstrate the utility of an enhanced evolu-

tionary process known as dynamic reinforcement. In particular, we will show how

a single agent can reinforce the emergence of an efficient network through a simple

“dynamic” processing of its own available information that uses the rate of observed

reward changes [CS07]. This has the effect of reinforcing efficient networks while

destabilizing the non-efficient networks.

5.4 The model

5.4.1 One-way benefit flow

Let I = {1, ..., n} denote a finite set of agents. The network relations among agents

are represented by a graph, whose nodes are identified with the agents and whose

edges capture the pairwise relations.

We will consider a one-way (directed) flow model, where a network G is defined

as a collection of pairwise directed links, (i, s), i, s ∈ I. More precisely, G ⊆ {(i, s) :
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Figure 5.1: A network of three agents and one-way flow of benefits.

i, s ∈ I}. For example, the network G = {(1, 2), (1, 3), (3, 1)} is illustrated in Fig. 5.1.

In terms of the illustration, a link starts at s with the arrowhead pointing at i. This

represents flow of benefits/information from s to i.

Define a path from s to i in G, as (i ← s) =
⋃m−1

k=0 (sk+1, sk) for some positive

integer, m, where {sk}mk=0 is a sequence in I that satisfies s0 = s, sm = i, sk 6= sk+1

and (sk+1, sk) ∈ G for any k = 0, 1, ..., m− 1.

Definition 5.4.1 (Connectivity) A node i ∈ I is connected to a node s ∈ I\i if

there is a path from s to i. A network is connected if any i ∈ I is connected to any

s ∈ I\i.

We further assume that each agent is able to establish links only with “neighboring

agents”. The set of neighbors of agent i is denoted as Ni with cardinality |Ni|. In

the unconstrained neighbors case, Ni = I\i.

5.4.2 The network formation model

We will model network formation as an evolutionary process, where at each stage

agents decide which links to form. Based on agents’ decisions, a graph is being

formed, and a reward is assigned to each agent based on the information it receives

through its links and its neighbors’ links. In detail, the network formation model is

described as follows.
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5.4.2.1 Action space

The set of actions of agent i, denoted Ai, contains all the possible combinations of

neighbors with which a link can be established including the case of not establishing

any link, i.e., Ai = 2Ni.8

By enumerating the elements in Ai, we can associate the jth element of Ai with

a vertex, ej , of the probability simplex of dimension |Ai|, i.e., ∆(|Ai|). Accordingly,

we will use the same notation, αi ∈ Ai, to refer to an element of Ai either in terms

of an index over Ai, a vertex of ∆(|Ai|), or an clement of 2Ni. Finally, let |αi| denote

the cardinality of αi viewed as an element of 2Ni.

5.4.2.2 Learning algorithm

At each stage k ∈ N, each agent i selects an action αi(k) ∈ Ai according to the

probability distribution over Ai

(1− λ)xi(k) +
λ

|Ai|
1,

where i) xi(k) ∈ ∆(|Ai|) is the strategy of agent i at stage k; ii) 1 is a vector of

appropriate dimension with each element equal to 1; and iii) λ ≥ 0 is a parameter used

to model possible perturbations in the decision making process, also called mutations

[KMR93, You93].

We assume that each agent i “learns” via a modified version of the perturbed

learning algorithm L̃λ
R−I , introduced in Section 3.8. This algorithm is written recur-

sively as

xi(k + 1) = xi(k) + ǫ(k) · (Ri(α(k))− Ci(αi(k), xi(k))) · (αi(k)− xi(k)), (5.1)

8Note that ∅ ∈ 2Ni , which corresponds to the case of establishing no link.
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which is a stochastic recursion with step size sequence ǫ(k) , 1/(k + 1).9

In the above recursion, Ri : A → R+ denotes the reward of agent i, which generally

depends on the choices of all agents α = (α1, ..., αn) (i.e., the current network) defined

in the product set A , ×i∈IAi.

We will assume that the rewards are bounded and nonnegative, i.e., 0 ≤ Ri(·) <

Rmax <∞, for some Rmax.

We also assume that the establishment and maintenance of a link is costly. In

recursion (5.1), Ci : Ai × ∆(|Ai|) → R+ denotes the cost of establishing and main-

taining a link. This cost is assumed to depend on both the current and previously

established links. Dependence of previously established links is implicit through the

strategy xi(k).

It is important to recall that the dynamics of the strategy, xi, is payoff based.

That is, its evolution is determined by realized reward and cost function values.

5.4.2.3 Learning algorithm with dynamic reinforcement

Further insights into the possible emergence of efficient network structures can be

derived by considering a dynamic processing of the local information available to each

agent. In particular, agents might “value” a link’s significance by also considering the

recent reward changes provided by this link. That is, agents might be more satisfied

with links that increased their available information in the recent history than with

links that have provided large amounts of information throughout the whole history.

Based on similar reasoning, we will utilize a modified action selection probability

distribution of the form

Π∆{(1− λ)[xi(k) + γi · (xi(k)− yi(k))] +
λ

|Ai|
1}, (5.2)

9The foregoing analysis holds for any step size of the form ǫ(k) = 1/(kν + 1), where ν ∈ (1/2, 1].
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where a new state variable, yi, is updated according to the recursion

yi(k + 1) = yi(k) + ǫ(k) · (xi(k)− yi(k)).

This reinforcement scheme is a special case of the more general dynamic reinforce-

ment scheme introduced in Section 4.5.

5.4.3 Reward and cost function

The reward function will be defined as in the network formation models of [JW96,

BG00, Wat01]. In those models, each agent is a source of benefits that others can

tap via the formation of pairwise links. We suppose that a link with another agent

allows access to the benefits available to the latter via its own links. In particular,

we define:

Ri(α) ,
∑

s∈I,s 6=i

δdis(α) (5.3)

where i) δ ∈ (0, 1] measures the level of information decay and ii) dij : A → N is

defined as the minimum distance from j to i given the current action profile α ∈ A.

We adopt the convention that dij(·) =∞, when (i, j) /∈ G.

For each agent i ∈ I, we define the cost function Ci : Ai ×∆(|Ai|)→ R+ to be:

Ci(αi, xi) , κ0 |αi|+ κ1ϕi(αi)
T(1− ϕi(xi)), (5.4)

for some κ0, κ1 ≥ 0. The parameter κ0 corresponds to the cost of maintaining an

existing link, while κ1 corresponds to the cost of establishing a new link. The function

ϕi : ∆(|Ai|)→ R
|Ni| is defined by

[ϕi(xi)]j =
∑

{a∈Ai:j∈a}

xia.
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By abuse of notation, we are using a as both an index, as in xia, and a set, as in

j ∈ a ∈ 2Ni. In words, the [ϕi(xi)]j denotes the probability that agent i will form a

link to neighbor j based on the distribution xi. The term (1−ϕi(xi))
Tϕi(αi) penalizes

misalignment of the action αi with the distribution xi. In the perfectly aligned case,

for any αi ∈ Ai (viewed as a vertex of ∆(|Ai|)),

ϕi(αi)
T(1− ϕi(αi)) = 0

whereas in the worst case,

max
xi

ϕi(αi)
T(1− ϕi(xi)) = |αi| .

We make the following assumptions for the remainder of the chapter :

Assumption 5.4.1 0 ≤ κ0 + κ1 < δ.

This assumption assures that

max
αi∈Ai

Ri(αi, α−i)− Ci(αi, xi) > 0

for all α−i ∈ ×s 6=i∆(|As|)) and xi ∈ ∆(|Ai|). In particular, agents always have an

incentive to form at least one link.

Assumption 5.4.2 The neighbor sets {N1,N2, ...,Nn} are such that a connected net-

work is feasible.

5.4.4 Efficiency

Having stated the general properties of the reward and cost functions, we also need

to characterize the efficiency of a network structure. To this end, we borrow the

definition of the value of a network from [JW96].
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First, define the agent utility function vi : A×∆(Ai)→ R+ as

vi(α, xi) = Ri(α)− Ci(αi, xi), (5.5)

i.e., the combined reward minus cost in the update equation (5.1). Note that unlike

typical utility functions in network formation games, this utility function depends

explicitly on both collective actions, α, and an agent’s strategy, xi. In the special

case where xi = αi, the cost term only reflects maintenance costs (i.e., the κ0 term),

whereas establishment costs (the κ1 term) are zero.

Definition 5.4.2 (Network value) The value of the network V : A → R+, is the

sum of agent rewards minus maintenance costs at an action profile, α ∈ A, i.e.,

V (α) =
∑

i∈I

vi(α, αi). (5.6)

Definition 5.4.3 (Efficient network) An efficient network is a joint action profile

α ∈ A with the maximum value.

The following is a direct consequence of the Definition 5.4.3:

Claim 5.4.1 An efficient network is connected. In the special case of δ = 1, an

efficient network is a connected network with a minimal number of links.

Proof. Assume that an efficient network, say G, is not connected. Then there exist

i, j ∈ I such that j ∈ Ni and (i← j) /∈ G. Adding (i, j) to G increases the reward of

agent i, since δ > κ0 + κ1, and therefore it increases the value of the network. Thus,

the network G is not efficient, which contradicts our initial assumption. Thus, any

efficient network is a connected network.
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In the special case of δ = 1, the value of any connected network is

V (α) = n(n− 1)− κ0

n
∑

i=1

|αi|

If Ac denote the set of connected networks, any efficient network, say α∗, satisfies

α∗ ∈ arg max
α∈Ac

V (α)

or, equivalently,

α∗ ∈ arg min
α∈Ac

n
∑

i=1

|αi|,

which implies that an efficient network has a minimal number of links. �

5.5 Stability analysis

5.5.1 Asymptotic stability analysis

The asymptotic convergence properties of the stochastic recursion (5.1) with dimin-

ishing step size was described in Section 3.8.3. In this framework, we showed by

Proposition 3.8.3 that the reinforcement scheme converges to an invariant set of the

set of ordinary differential equations:

ẋi = gi(x) , ri(x)− Ri(x) · xi,

where

ri(x) , E[Ri(α(k))αi(k)|x(k) = x] ∈ R
|Ai|
+ ,

Ri(x) , E[Ri(α(k))|x(k) = x] ∈ R+.
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The above set of ODE’s can be written more compactly as

ẋ = g(x) , col{gi(x)}i∈I , (5.7)

where col{A} denote the column vector of the elements of a finite set A.

Moreover, again according to Proposition 3.8.3, there is a positive probability that

the reinforcement scheme converges to a locally stable set (in the sense of Lyapunov)

of the ODE (5.7). It was also shown by Proposition 3.8.4 that there is probability

zero that the reinforcement scheme will converge to a linearly unstable point of the

ODE (5.7).

In this section, we are going to analyze the local stability properties of the sta-

tionary points of the ODE (5.7), since stationary points are invariant sets. This way,

we can derive conclusions regarding convergence of the stochastic recursion (5.1).

5.5.2 Stationary points

It has been shown by Proposition 4.4.1 that for λ = 0, any pure strategy profile

α∗ = (α∗
1, ..., α

∗
n) is a stationary point of the stochastic recursion (5.1).

Moreover, by Proposition 4.4.3, for sufficiently small λ > 0, there exists a unique

continuously differentiable function w∗ : R+ → ×iR
|Ai|, such that limλ→0 λw

∗(λ) = 0,

and

x∗ = α∗ + λw∗(λ) (5.8)

is a stationary point of the ODE (5.7).

5.5.3 Local asymptotic stability (LAS)

Having characterized the stationary points of the stochastic recursion (5.1), we will

describe locally the stability properties of these points. To this end, we first need to
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define the conditional expected utility vi(αi, x) as the expected utility of agent i given

that it selects action αi, incurs establishment costs according to xi, and other agents

select their actions according to the probability distributions x−i, i.e.,

vi(αi, x) = E{vi(α, xi)
∣

∣αi, x−i},

where vi(·, ·) is defined in (5.5).

Proposition 5.5.1 (LAS of Standard Reinforcement) For sufficiently small λ >

0, let x∗ be a stationary point of the ODE (5.7) corresponding to some α∗ ∈ A ac-

cording to (5.8). The stationary point x∗ is a locally asymptotically stable point of

the ODE (5.7) for sufficiently small λ > 0 if and only if, for each i ∈ I,

vi(α
∗
i , x

∗) > vi(α
′
i, x

∗) (5.9)

for all α′
i ∈ Ai\α∗

i .

Proof. The proof follows similar reasoning as Proposition 4.4.4. �

In the case of the dynamic reinforcement scheme of (5.2), the relevant ODE is

now




ẋ

ẏ



 =





g(x, y)

x− y



 , (5.10)

and the condition for stability takes the following form:

Proposition 5.5.2 (LAS of Dynamic Reinforcement) Assume the hypotheses of

Proposition 5.5.1 under stability condition (5.9). Assume that each agent i applies

dynamic reinforcement (5.2) for some γi > 0. The strategy profile x∗ is a locally

asymptotically stable stationary point of the ODE (5.10) for sufficiently small λ > 0
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if and only if, for each agent i ∈ I, the derivative feedback coefficient satisfies

0 ≤ γi <
vi(α

∗
i , x

∗)− vi(α
′
i, x

∗) + 1

vi(α′
i, x

∗)
(5.11)

for all α′
i ∈ Ai\α

∗
i .

Proof. The proof follows similar reasoning as Theorem 4.5.1. �

5.6 Nash networks

In the literature of network formation, where each agent performs a best-reply at the

current network structure, Nash equilibria are usually called Nash networks, [BG00],

and correspond to the case where there is no agent that can unilaterally benefit from

establishing a new link or severing an existing link. In the framework of our network

formation model, where decisions are state-dependent, we define:

Definition 5.6.1 (Nash network) An action profile α∗ ∈ A is a Nash network if

and only if

vi((α
∗
i , α

∗
−i), α

∗
i ) ≥ vi((α

′
i, α

∗
−i), α

∗
i ), (5.12)

for all α′
i ∈ Ai\α∗

i and i ∈ I. Likewise, a strict Nash network satisfies the strict

inequality in (5.12).

Claim 5.6.1 Nash networks are connected.

Proof. Assume that a Nash network, say G, is not connected. Then there exist

i, j ∈ I such that j ∈ Ni and (i← j) /∈ G. Adding (i, j) to G increases the reward of

agent i, since δ > κ0 + κ1, and therefore it increases the reward of agent i. Thus, the

network G is not a Nash network, which contradicts our initial assumption. Thus,
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Figure 5.2: Nash equilibria in case of the connections model of [JW96].

any Nash network is a connected network. �

The Nash networks for n = 3 agents and no decay are shown in Fig. 5.2. For

example, in Fig. 5.2(a), assuming that κ0 > 0 and κ1 = 0, all agents realize the same

utility, which is equal to 2 − κ0. This is a strict Nash network since each agent can

only be worse off by unilaterally changing its links. Likewise, in Fig. 5.2(b), agents

2 and 3 realize utility 2 − κ0, while agent 1 realizes 2 − 2κ0. Moreover, agent 2 is

indifferent between creating a link with agent 1 or agent 3, since both links provide

2− κ0. Similarly, agent 3 is indifferent between creating a link with agent 1 or agent

2. Instead, agent 1 can only decrease its utility by changing its strategy. Hence, for

the case of κ1 = 0, network (b) is not a strict Nash network.

However, in case κ1 > 0, both Nash networks in Fig. 5.2 are strict, since each

deviation from the equilibrium play is charged by an extra cost of order κ1. For

example, in Fig. 5.2(b), agent 2 is no longer indifferent between creating a link with

agent 1 or agent 3.

According to the definition of a Nash network and local stability analysis of Propo-

sition 5.5.1, we conclude that:

Proposition 5.6.1 Under the hypotheses of Proposition 5.5.1, a stationary point

x∗ = α∗ + λw∗(λ), such that α∗ is a strict Nash network, is a locally asymptotically

stable point of the ODE (5.7) for sufficiently small λ > 0.
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Figure 5.3: A typical response of the stochastic iteration (5.1), for δ = 1, κ = 1/2,
κ1 = 0, λ = 0.01. Convergence to the efficient formation of Fig. 5.2(a) is observed.

Therefore, finding the set of strict Nash networks α∗ reveals the set of stationary

points x∗ that are locally stable.

Note that according to Propositions 3.8.3–3.8.4, convergence to non-strict Nash

network need not be excluded.10 Figs. 5.3–5.4, simulate two characteristic responses

of the stochastic recursion (5.1) where we consider the following action spaces A1 =

{∅, {2}, {3}, {2, 3}}, A2 = {∅, {1}, {3}, {1, 3}}, A3 = {∅, {1}, {2}, {1, 2}}, denoted

by Ai = {A, B, C, D}, i = 1, 2, 3. In Fig. 5.3, the recursion converges to the efficient

formation of Fig. 5.2(a), while in Fig. 5.4 the recursion converges to the non-efficient

network of Fig. 5.2(b).

5.6.1 Frictionless benefit flow (δ = 1)

In order to characterize the Nash networks in the general case of n > 3 agents, we

need to define a general class of networks called critically linked networks.

10By Proposition 5.5.1, the linearization of the ODE (5.7) about a Nash network may exhibit
some zero eigenvalues.
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Figure 5.4: A typical response of the stochastic recursion (5.1), for δ = 1, κ = 1/2,
κ1 = 0, λ = 0.01. Convergence to the non-efficient formation of Fig. 5.2(b) is observed.

Definition 5.6.2 (Critically linked network) A network, G, is critically linked if

i) it is connected and ii) for all (i, j) ∈ G, the unique path (i← j) is (i, j).

In words, a critically linked network is such that if agent i drops a direct link to

(neighboring) agent j, then i loses connectivity to j by any means.

Proposition 5.6.2 (Nash networks) For δ = 1, n > 2, and κ0, κ1 > 0, a network

is a strict Nash network if and only if it is a critically linked network.

Proof. (Critically linked⇒ Strict Nash) Let α∗ ∈ A correspond to a critically linked

network, G∗. Suppose for some agent i ∈ I and some action α′
i ∈ Ai, α

′
i 6= α∗

i ,

vi((α
′
i, α

∗
−i), α

∗
i ) ≥ vi((α

∗
i , α

∗
−i), α

∗
i ), (5.13)

i.e., agent i’s utility of α′
i is at least that of α∗

i . Denote the resulting network by G ′.

The distinction between α∗ and α′ lies in the set of neighbors in Ni that were

dropped, added, or kept. Denote these sets of neighbors by Ndrop, Nkeep, Nadd ⊂ Ni,
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respectively. Accordingly, we can identify

α∗ = Nkeep ∪Ndrop & α′ = Nkeep ∪Nadd.

Clearly if Ndrop = ∅, then (5.13) cannot hold.

Assume for now that G′ is connected. We will revisit this assumption later. Since

G∗ and G′ are connected, the derived benefits in both cases equals n − 1. Since the

establishment coefficient κ1 is strictly positive, the only possibility for (5.13) to hold

is if |Nadd| < |Ndrop|. That is, the maintenance cost is strictly less using α′, for if

the maintenance costs were equal, the establishment cost would result in (5.13) being

violated.

We now show that |Nadd| < |Ndrop| contradicts G∗ being a critically linked network.

− For each element of Nadd, construct a path without loops in G∗ to i. These

paths must pass through Nkeep ∪Ndrop.

− Since |Ndrop| > |Nadd|, there exists a k∗ ∈ Ndrop that is not part of any of these

paths.

− Construct a path in G∗ from k∗ to any element in Nadd. Since G′ is connected

and from the critically connected assumption, it is possible to construct such a

path that does not pass through agent i.

− The conclusion is a path from k∗ to an element of Nadd to an element of α∗\k∗.

This path contradicts the critically linked assumption, since the existence of

this path implies that k∗ could be dropped in G∗ without loss of connectivity

to agent i.

Returning to the assumption that G ′ is connected, if this were not the case, then

adding a link to an appropriate element of Ndrop results in an increased utility. We

can repeat this process, each time relabeling α′ and G′ until G′ is connected.
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Figure 5.5: Flower networks in case of n = 4.

(Strict Nash⇒ Critically linked) Suppose a Nash network is not critically linked.

Then there exists an agent i that can drop a direct link to an agent j ∈ Ni but still

maintain connectivity to j, and hence receive the benefits of j without incurring the

maintenance cost of j. Therefore, the original network cannot be a Nash network,

which is a contradiction. �

A special class of critically linked networks are so-called flower networks, defined

in [BG00]. For example, Figs. 5.2 and 5.5 show all possible flower networks for the

case of n = 3 and n = 4 agents, respectively. Contrary to prior work on best-reply

dynamics, here we see that the introduction of a dynamic establishment cost function

was able to justify the emergence of flower networks. Under best-reply dynamics,

convergence to the entire family of flower networks is not possible [BG00].11

In the special case of i) no establishment cost (κ1 = 0) and ii) unconstrained

neighbors (Ni = I\i), we can have a more explicit characterization of strict Nash

networks. We first define the following.

Definition 5.6.3 (Wheel network) A wheel network is a connected network uniquely

11In [BG00], the introduction of a discount factor into the reward function resulted in the emer-
gence of multiple Nash equilibria, the family of which includes the flower networks. Although, in
[BG00], flower networks are defined as the union of distinct wheel sub-networks with only one com-
mon node (i.e., it is a subset of the set of flower networks defined in this paper), there is a specific
sub-class of flower networks (the ones with two petals where one of them is a spoke) that cannot be
strict Nash networks.
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defined by a path (i← i) for some i ∈ I where every agent in I is visited only once.

Proposition 5.6.3 For δ = 1, n > 2, and 1 > κ0 > κ1 = 0, the wheel network is the

unique strict Nash network.

Proof. It is straightforward to check that the wheel network is a strict Nash network.

Let us consider any other (necessarily connected) Nash network, G. If it is not a wheel

network, there exists an agent that is a common link between two other agents, i.e.,

(j, i), (k, i) ∈ G for some i, j, k ∈ I. This cannot be a strict Nash network, since agent

j is indifferent between connecting to i or connecting to k. �

5.6.2 Decaying benefit flow (δ < 1)

In this section, we analyze the case where the information flow is also subject to decay.

We will see that a network being a Nash equilibrium imposes a structural constraint

on the distances between neighboring agents.

Proposition 5.6.4 (Nash networks with decay) Let 0 < δ < 1, n > 2, κ0 > 0,

and κ1 ≥ 0. Let G be a Nash network corresponding to the joint action α ∈ A. For

any agent i, if |αi| < |Ni|, then

δ − δdij(α) ≤ κ0 + κ1 for all j ∈ Ni.

The condition |αi| < |Ni| means that agent i is not using all of its available links.

The inequality (5.14) is revealing only for neighbors of i for which there is not a direct

link. This could be of interest, for example, in the unconstrained neighbors case with

a large number of agents. Proof. Let α∗
i satisfy the assumptions of Proposition 5.6.4,

and compare an alternative action α′
i ∈ Ai that consists of adding a direct link to
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neighbor j, i.e., α′
i = αi ∪ {j}. The resulting utility to agent i can be bounded by

vi((α
′
i, α−i), αi) ≥ vi((αi, α−i), αi) + (δ − δdij(α))− (κ0 + κ1).

That is, the consequence of adding a link to j shortens the distances to other links;

adds the direct benefit of a link to j; loses the indirect benefit of a link to j; incurs

additional maintenance cost; and incurs additional establishment cost. Therefore, if

(δ − δdij(α))− (κ0 + κ1) > 0, (5.14)

there is an incentive to add a link to j, and so α cannot be a Nash network. Con-

versely, asserting that α is a Nash network implies the desired result. �

This theorem can be used to bound distances to neighbors as follows. Inequality

(5.14) is equivalent to

dij(α) ≤
log(δ − (κ0 + κ1))

log(δ)
.

A sufficient condition to bound the distance to neighbors by dmax is then

κ0 + κ1 ≤ δ − δdmax .

Let us assume for example that

δ − δ2 < κ0 + κ1 < δ − δ3.

It is straightforward to check that the networks shown in Fig. 5.6 are Nash networks.

We observe that a distance of 3 among any two agents is not supported in any of

these networks.
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Figure 5.6: Two Nash networks in case of n = 4 agents and δ− δ2 < κ0 +κ1 < δ− δ3.

5.7 Dynamic reinforcement

In Chapter 4 it was shown that a dynamic reinforcement scheme of the form of (5.2)

can destabilize all non-efficient Nash equilibria in coordination games. We wish to an-

swer the question of whether such a reinforcement scheme can be used for distributed

reinforcement to desirable networks.

Intuitively, the dynamic reinforcement scheme of (5.2) reinforces changes in strat-

egy. Following the language of Propositions 3.8.3–3.8.4, let x∗ be a joint equilibrium

strategy associated with some joint action α∗ ∈ A for sufficiently small λ. Dynamic

reinforcement effectively skews the perceived payoff benefits of unilateral action devi-

ations. For example, suppose α′
i is an alternative action for agent i. Under dynamic

reinforcement, the perceived benefit of a deviation is

(1 + γi)vi(α
′
i, x

∗)− (vi(α
∗
i , x

∗) + 1),

as opposed to the actual benefit in the absence of dynamic reinforcement, which is

vi(α
′
i, x

∗)− vi(α
∗
i , x

∗).

If α∗ corresponds to a Nash equilibrium strategy, the actual deviation benefit will be

negative for all alternatives, α′
i. Under dynamic reinforcement, the perceived benefit
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can be positive and induce a departure for that agent from the action α∗
i .

This departure can, in turn, induce other agents to abandon their Nash equilibrium

actions. For example, in Fig. 5.2(b), if agent 2 is able to support dropping a link with

agent 1 in favor of a link with agent 3, then agent 1’s best reply will be to drop

the link with agent 3 maintaining only the link with agent 2, which gives rise to the

efficient wheel formation of Fig. 5.2(a).

On a cautionary note, excessive dynamic reinforcement can induce deviations from

all Nash equilibria. The key to evoking efficient outcomes lies in finding the correct

level of dynamic reinforcement, as measure by the coefficients γi, to induce deviations

from non-efficient equilibria while maintaining stability of efficient equilibria. The

following claims explicitly carry out this procedure for a special case of network

formation.

Claim 5.7.1 Assume that for each i ∈ I, Ni = I\i. Let δ = 1, n > 2, and κ0, κ1 ≥ 0.

Let xnon be a stationary point corresponding to an non-efficient Nash network config-

uration, αnon, according to (5.8) for sufficiently small λ > 0. There exists an agent i

and constant γnon > 0 such that if agent i applies the dynamic reinforcement scheme

of (5.2) with coefficient γi > γnon, then the non-efficient equilibrium formation, xnon,

is linearly unstable point for (5.10).

Proof. For any non-efficient configuration (in this case, anything other than the

wheel network) by following the proof of Proposition 5.6.3, we can identify an agent i

that would be indifferent between its current action, αnon
i , and an alternative, α′

i, if κ1

were equal to 0. We will use Proposition 5.5.2 to compute a destabilizing level of γi

for this agent (regardless of the value of κ1). For this agent, under the assumptions of

Claim 5.7.1, vi(α
non
i , xnon) = (n−1)−κ0 +O(λ). If agent i deviates to α′

i, its expected

utility becomes vi(α
′
i, x

non) = (n − 1) − κ0 − κ1 + O(λ). Applying Proposition 5.5.2
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and setting

γnon =
1 + κ1

(n− 1)− (κ0 + κ1)

gives the desired result. �

Claim 5.7.1 shows that there exists an agent who is able to destabilize a non-

efficient network. The process could get attracted to another steady-state configura-

tion that is not efficient. However, if each agent i ∈ I applies derivative action with

γi > γnon, then all non-efficient networks will be linearly unstable.

The following claim computes an upper bound on the γi so that stability of the

efficient (wheel) network is maintained.

Claim 5.7.2 Assume that for each i ∈ I, Ni = I\i. Let δ = 1, n > 2, and

κ0, κ1 ≥ 0. Let xeff be a stationary point corresponding to the efficient Nash network

wheel configuration, αeff , according to (5.8) for sufficiently small λ > 0. There exists

a γeff > γnon such that if any agent i applies the dynamic reinforcement scheme of

(5.2) with coefficient γi, 0 < γi < γeff , then xeff is a locally asymptotically stable

equilibrium for (5.10).

Proof. Again, we will use Proposition 5.5.2 to compute an upper bound for γeff .

Assume that agents are currently playing the efficient equilibrium configuration with

associated strategy xeff . Consider any agent i ∈ I, who is currently playing the

corresponding equilibrium action αeff
i . Agent i realizes utility vi(α

eff
i , x

eff) = (n −

1)− κ0 +O(λ), since the network is connected (by Proposition 5.6.1) and each agent

maintains only one link (by Proposition 5.4.1).

Assume now that agent i deviates by selecting a different action α′
i 6= α∗

i , such

that vi(α
′
i, x

eff) is as large as possible. This deviation corresponds to the tightest

upper bound in Proposition 5.5.2. Since κ0 < 1, the desired action α′
i corresponds to

the case of establishing two links, one of which is the link of αeff
i and the other link
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arbitrary. In this case, vi(α
′
i, x

eff) = (n − 1) − 2κ0 − κ1 + O(λ), and by Proposition

5.5.2, for any γi > 0 such that

γi < (1 + κ0 + κ1)/((n− 1)− 2κ0 − κ1) +O(λ) = γeff ,

the efficient equilibrium xeff is locally asymptotically stable for (5.10). Since

1 + κ1

(n− 1)− 2κ0 − κ1

>
1 + κ1

(n− 1)− κ0 − κ1

,

we conclude that γeff > γnon for small λ. �

Based on the previous claims, we are ready to describe convergence and non-

convergence properties of the dynamic reinforcement scheme in the case of frictionless

benefit flow.

Proposition 5.7.1 In the framework of Claims 5.7.1–5.7.2, if γi ∈ [γnon, γeff) for all

i ∈ I, then Prob{limk→∞ x(k) = xeff} > 0, and Prob{limk→∞ x(k) = xnon} = 0.

Proof. This is a direct consequence of Propositions 3.8.3–3.8.4. �

For example, let us consider the case of n = 3 agents and κ0 = 1/2, κ1 = 0,

λ = 0.01 and δ = 1. According to Claims 5.7.1–5.7.2, γnon = 2/3 and γeff = 3/2.

In Fig. 5.7 we have simulated the stochastic recursion (5.1) with initial conditions

that are close to the non-efficient network of Fig. 5.2(b) when all agents apply the

dynamic reinforcement scheme of (5.2) with γ = 1. Note that since all agents apply

dynamic reinforcement with γ ∈ [γnon, γeff), according to Proposition 5.7.1 the non-

efficient network Fig. 5.2(b) will be linearly unstable.12 We observe that deviation

12In fact, it is only sufficient either agent 2 or 3 to apply dynamic reinforcement in order for the
non-efficient network to be destabilized, according to Claim 5.7.1.
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Figure 5.7: A typical response of the stochastic iteration (5.1), for δ = 1, κ0 = 1/2,
κ1 = 0, λ = 0.01 when all agents apply dynamic reinforcement with γ = 1 and for an
initial condition that is close to the non-efficient formation of Fig. 5.2(b).

from the non-efficient network is achieved and the process converges to the efficient

configuration.

5.8 Application: Topology control of ad-hoc wireless sensor

networks

5.8.1 Motivation

Recent advances in wireless communications and electronics have enabled the devel-

opments of low-cost, low-power, multifunctional sensor nodes that are small in size

and communicate untethered in short distances. These tiny sensor nodes, which con-

sist of sensing, data processing, and communicating components, leverage the idea of

sensor networks [ASS02].

The position of sensor nodes need not be engineered or predetermined. This

allows random deployment in inaccessible terrains or disaster relief operations. On the
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other hand, this also means that sensor network protocols must possess self-organizing

capabilities.

Some of the application areas are health, military, and home. In military, for ex-

ample, the rapid deployment, self-organization, and fault tolerance characteristics of

sensor networks make them a very promising sensing technique for military command,

control, communications, computing, intelligence. In health, sensor nodes can also

be deployed to monitor patients and assist disabled patients. Some other commercial

applications include managing inventory, monitoring product quality and monitoring

disaster areas.

Realization of these and other sensor network applications require wireless ad hoc

networking techniques. Although many protocols and algorithms have been proposed

for traditional wireless ad-hoc networks, they are not well suited to the unique features

and application requirements of sensor nodes. To illustrate this point the differences

between sensor networks and ad hoc networks are:

− The number of sensor nodes in a sensor network can be several orders of mag-

nitude higher than the nodes in an ad hoc network.

− Sensor nodes are densely deployed.

− Sensor nodes are prone to failures.

− The topology of sensor nodes changes very frequently.

− Sensor nodes mainly use a broadcast communication paradigm, whereas most

ad hoc networks are based on point-to-point communications.

− Sensor nodes are limited in power, computational capacities, and memory.

− Sensor nodes may not have global identification (ID) because of the large

amount of overhead and large number of sensors.
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We are going to introduce some basic ideas regarding the current research is-

sues in this emerging field. We also attempt an investigation into pertaining design

constraints and outline the use of certain tools to meet the design objectives.

5.8.2 Sensor networks: Communication architecture

The sensor nodes are usually scattered in a sensor field. Each of these scattered sensor

nodes has the capabilities to collect data and route data back to the sink. Data are

routed back to the sink by a multihop infrastructureless architecture through the sink.

The sink may communicate with the task manager node via Internet or Satellite. The

design of the sensor network is influenced by many factors, including

− fault tolerance (nodes might fail, and such failures should not affect the overall

task of the network),

− scalability (nodes may be thousands, and network should be able to work well),

− network topology (topology might change over time, or additional nodes might

be added),

− power consumption (the wireless sensors have a limited power source. The mal-

functioning of a few nodes can cause significant topological changes and might

require rerouting of packets and reorganization of the network. At the same

time, large communication distances are costly. Therefore, power conservation

and power management is quite important).

Of course, there are also several challenging hardware design problems, which we

will not be considered here. More information about these issues can be found at

[ASS02] and the references therein.
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5.8.3 The protocol hierarchy

Sensors communicate and execute tasks through a protocol hierarchy (starting from

the lowest level) which includes the:

1. physical layer,

2. data link layer,

3. network layer,

4. transport layer,

5. application layer.

The physical layer includes the modulation, transmission and receiving techniques.

The data link layer establishes the communication rules among nodes (usually exe-

cuted by a medium access control (MAC) protocol) and minimizes collision among

neighboring nodes’ broadcasts. The network layer takes care of routing the data sup-

plied by the transport layer. The transport layer helps helps to maintain the flow of

data if the sensor networks application requires it. Finally, depending on the sensing

tasks, different types of application software can be built and used on the application

layer.

Also, there might be other protocols (usually called planes) that control power,

movement and task distribution among nodes that may affect each one of the above

layers. These planes help the sensor nodes coordinate the sensing task and lower

overall power consumption.

In this section, we will deal with design questions posed about the data link layer.
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5.8.4 The data link layer

The data link layer is responsible for enabling the communications among nodes in

the network. In particular, a link-layer infrastructure needs to be established and

also channel access needs to be regulated among the nodes. This process is captured

by the Medium Access Control (MAC) protocol.

Several MAC schemes have already been developed for other wireless networks

(e.g., cellular systems, bluetooth, etc). In cellular systems power conservation is of

secondary importance, while every mobile node is only a hop away from the nearest

base station. Therefore, MAC protocol in cellular systems is only assigned a resource

allocation task. However, in sensor networks there is no base station and such a

scheme will not be useful. Bluetooth and mobile ad-hoc networks are probably closer

to the design question in sensor networks.

The Bluetooth topology is a star network where a master node can have up to

seven slave nodes wirelessly connected to it. The MAC protocol in a mobile ad-hoc

network has the task of forming the infrastructure and maintain it in the face of

mobility. Power consumption is again of secondary importance. On the other hand,

a sensor network comprises of a much larger number of nodes. Also topology changes

might be more frequent and can be attributed to both node mobility and failure.

Therefore, new MAC protocols need to be developed for sensor networks.

More specifically, the methods for channel access in the existing ad-hoc networks

is done by two different methods: contention or explicit organization in time or

frequency or code domains. The MAC-layer design for 802.11 is an example of the

former method. The contention-based channel access scheme is not suitable for sensor

networks, due to their requirement for radio transceivers to monitor the channel at all

times, which is considered quite expensive for the low radio ranges of sensor networks

[SGA00]. In sensor networks instead, it will be useful to turn off the radio when there

is no need for communication. The organized channel access [BE81], attempts to
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determine network connectivity first (i.e., discover the radio neighbors of each node)

and then assign collision-free channels to links. To ease the assignment problem, a

hierarchical structure is formed in the network to localize groups of nodes and make

the task of channel assignment more manageable. The problem, however, is how to

determine the cluster memberships and the cluster heads so that the whole network

is covered while the sensors move [SGA00].

Several attempts have been done to this end, including the Self-Organizing Medium

Access Control (SMACS) in [SGA00]. The SMACS scheme proposed in [SGA00] is

a combination of the neighbor discovery and channel assignment phases. In SMACS

a channel is immediately assigned to a link immediately after the link’s existence is

discovered. Thus, by the time all nodes hear all their neighbors, they will have formed

a connected network, where there exists at least one multihop path between any two

distinct nodes. However, there is the possibility for time collisions with slots assigned

to adjacent links whose existence is not known at the time of channel assignment. To

reduce the likelihood of collisions, reference [SGA00] requires each link to operate on

a different frequency, where each frequency is chosen from a large pool of frequencies.

Reference [FFM05] argues that since the number of channels in SMACS is a function

of the density of the links, the scheme will not be easily applicable.

5.8.5 Topology control

Besides the necessity of designing protocols that achieve a self-organization of the

sensor network that is robust to failures or mobility, there several other criteria that

a communication graph needs to satisfy. The schemes that were presented above

do not distinguish among neighbors. Instead, by the time a neighbor is detected, a

channel is assigned to it.

Other criteria that a communication graph needs to satisfy include
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− minimal connectivity,

− bounded degree,

− minimum interference,

− small number of hops in each path (low stretch),

− energy efficiency.

In addition, we need to take into account that decentralized schemes for topology

control do not typically have access to directional or positional information. Memory

limitations in sensor nodes also impose the restriction that a node can only keep track

of O(1) neighbors. Furthermore, no global clock or other synchronizing mechanism

is assumed, but all sensor nodes have the same clock frequency [FFM05].

It is reasonable to consider that implicitly a minimally connected graph that has

minimum degree it will have minimum interference. Indeed interference was only

implicitly considered in the early work of topology control [BLR03, SWL04, FFM05,

San05, LSW05, DPP06]. For example, in [BLR03] a network formation protocol is

introduced, where the node degree k is a constant tuned to ensure connectivity with

high probability is given. A self-organizing method that provides bounded power

stretch factor and bounded node degree is proposed in [SWL04], although distance

estimation hardware is necessary for the application of this protocol. In [FFM05],

a protocol is proposed that guarantees constant degree spanning graph with opti-

mal hop-stretch. This approach does not make use of any positional or directional

hardware, but only of the relative position among nodes.

As far as node interference is concerned, we would like to note that the intuition

behind these approaches is that a low (constant) node degree at all nodes would solve

the interference issue automatically. According to [LRW08], node interference need

to be dealt and solved separately before deriving distributed algorithms that will
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guarantee all the above requirements. Several studies on these lines include the work

of [BRW04]. It is not clear yet what is the complexity of the optimization problem of

minimizing the interference, and it is considered an open problem in sensor networks

[LRW08].

5.8.6 An information-based learning approach

We would like to examine the utility of the proposed learning algorithms in the

topology control problem in wireless ad-hoc networks. To this end, we will consider

the one-way benefit model for network formation as described in Section 5.4.

Such a network formation scheme is energy efficient. Connected networks with

directed links require smaller amount of communications among nodes than networks

with non-directed links. The work on topology control cited above assumes only

bidirectional links among nodes. Furthermore, this network formation model estab-

lishes connected networks with positive probability (see Claim 5.6.1 and Proposi-

tion 5.6.1).

Moreover, this scheme can be designed so that it establishes networks with bounded

number of hops between any two neighboring nodes with positive probability. In

particular, by applying a decaying benefit flow scheme as presented in Section 5.6.2

we showed that a decay value can be designed so that the distance between any two

neighboring nodes is bounded above with positive probability (see Proposition 5.6.4).

Finally, this network formation model can establish networks with bounded node

degree. Although the learning algorithm penalizes the establishment of a new link,

the process may converge to a configuration where the number of links of a node

is n − 1 where n is the total number of nodes (e.g., the star network is a possible

limit point of the process when a decaying benefit flow is considered, see Fig. 5.6).

Therefore, we cannot rely on the fact that establishment of new links is costly in order

to bound the node degree.
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Figure 5.8: A Nash network in case of n = 4 nodes for some given neighborhood
structure, frictionless benefit flow and maximum allowed number of links equal to 1.

Such criterion can be achieved with probability one by suppressing the number of

actions (links) that can be established by each agent. However, we need to note that

this constraint may result in losing network connectivity when the network is not

dense enough. For example, when the benefit flow is frictionless (i.e., the benefits are

not decayed) and each agent may establish at most one link, Fig. 5.8 shows a possible

Nash network 13 of the learning process for some given neighborhood structure. Note

that node 2 is not connected with node 4, which implies that the network is not

connected.

However, when we do not constrain the neighborhood of each node, then Nash

networks will be connected networks.

Proposition 5.8.1 Consider a set of I = {1, 2, ..., n} nodes deployed on the plane,

and let Ni = I\i be the neighboring nodes of node i ∈ I. Assume the one-way

benefit flow model of Section 5.4.1, where for each node i ∈ I the action space is

Ai , {αi ∈ 2Ni : |αi| ≤ M} for some 1 ≤ M < n− 1. Consider also the reward

13See Definition 5.6.1.
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function of (5.3) with 0 < δ < 1 and the cost function of (5.4) with κ0 + κ1 ≤ δ.

Then, a Nash network is connected when δ is sufficiently close to 1.

Proof. Assume that a Nash network, say G, is not connected. This implies that

there exist i, j ∈ I such that (i ← j) /∈ G. Note that node i may establish at most

M links where 1 ≤ M < n− 1. There are two possibilities: (a) node i has currently

established < M links, (b) node i has currently established M links. It suffices to

show that in both cases, network G is not a Nash network, which is a contradiction

to our initial assumption.

(a) Assume that node i has currently established < M links. In that case, node i

can always benefit by establishing a new link with node j since δ ≥ κ0 + κ1, which

implies that G is not a Nash network.

(b) Assume now that node i has currently established M links. Let us first define

the set of nodes where node i is connected to either directly or indirectly as I , {h ∈

I : (i ← h) ∈ G}. Similarly, define for node j the set J , {k ∈ I : (j ← k) ∈ G}.

There are three possible cases: (b1) I ∩ J 6= ∅, (b2) i ∈ J and I ∩ J = ∅, and (b3)

i /∈ J and I ∩ J = ∅.

(b1) Let I ∩J 6= ∅. In this case, there exist h ∈ I\(I ∩J) and k ∈ I ∩J such that

(h, k) ∈ G. For δ sufficiently close to one, node h has the incentive to drop its link

with k and establish a link with j, since in this case it can still access the benefits

from k plus the new benefits from j. This implies that the network is not a Nash

network.

(b2) Let i ∈ J and I ∩J = ∅. In this case, we consider the following possibilities:

(1) there exists h ∈ I such that (h, i) ∈ G, or (2) there is no h ∈ I such that (h, i) ∈ G.

In the first case, for δ sufficiently close to 1, node h has the incentive to drop its link

with i and connect with j, since it gets access to the benefits of both j and i. In the

second case, and since I∩J = ∅, there exist nodes h, k ∈ I such that (h, k) ∈ (i← k)

and (k, h) /∈ (i← k). For δ sufficiently close to one, node k has the incentive to drop
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its link with h and establish a link with j, since in this case it can access the benefits

from i and i’s links (including h), and the new benefits from j. This implies that the

network is not a Nash network.

(b3) Let i /∈ J and I ∩ J = ∅. In other words, there is no link from the set

i ∪ I to j ∪ J and vice versa. Consider a node h ∈ i ∪ I and a node k ∈ j ∪ J .

Let α be the set of nodes node h has access to directly or indirectly. Note that

α ⊆ i ∪ I. Similarly, define β as the set of nodes node k is connected to. Note also

that β ⊆ j ∪ J . We observe that either |α| ≤ |β|, |α| > |β|. If |α| ≤ |β|, then node

h can benefit from dropping any one of its links and connect to k when δ is suffi-

ciently close to 1. In the case when |α| > |β|, then node k can benefit from dropping

any one of its links and connect with h, when δ is sufficiently close to 1. In either

case, we see that the network is not a Nash network when δ is sufficiently close to 1. �

In other words, Proposition 5.8.1 states that for any M such that 1 ≤M < n− 1,

a Nash network is connected as long as the decay factor is sufficiently close to 1 or

equal to 1. Fig. 5.9(a) shows a connected network where the maximum internode

distance among any two nodes is n− 1 (dependent on n), which is a Nash network if

δ is sufficiently close to 1 and M = 1.

If instead we prefer to bound the internode distance by dmax, that might result

into a non-connected Nash network when M is small compared to n. For example,

Fig. 5.9(b) shows a Nash network when δ is not close to 1 and M is small compared

to n. We summarize these remarks as follows:

We summarize the above observations for the unbounded neighborhood case as

follows:

Proposition 5.8.2 Consider a set of I = {1, 2, ..., n} nodes deployed on the plane,

and let Ni = I\i be the set of neighboring nodes of node i ∈ I. Assume that each

node i applies the reinforcement learning scheme of (5.1), where the reward function
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Figure 5.9: A Nash network in case of n = 4 nodes for unbounded neighborhood for
each node, with (a) frictionless benefit flow and maximum allowed number of links
per node M = 1, (b) δ2 < κ1 and maximum allowed number of links per node M = 1.

is given by (5.3) for some 0 < δ ≤ 1 and the cost function is given by (5.4) with

0 < κ0 + κ1 ≤ δ. Assume finally that for some 1 ≤M ≤ n− 1 and for each i ∈ I the

action set Ai is Ai , {αi ∈ 2Ni : |αi| ≤M}. Then a Nash network

1. is connected and has maximum node degree 1 ≤M < n−1, when δ is sufficiently

close to 1,

2. is connected and has maximum internode distance dmax ∈ {2, 3, ...}, when 0 <

κ0 + κ1 ≤ δ − δdmax and M = n− 1.

Proof. The first conclusion follows from Proposition 5.8.1. The second conclusion

follows from Claim 5.6.1 and Proposition 5.6.4. �

Another observation is:

Remark 5.8.1 When 1 ≤M < n− 1 and δ is sufficiently close to 1, then the wheel

network is the efficient network14 and furthermore it is a Nash network. Also, the

dynamic reinforcement scheme introduced in Section 5.4 can be applied to reinforce

convergence to the efficient network as shown by Proposition 5.7.1.

14See Definition 5.4.3.
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5.9 Remarks

We presented a method for distributed network formation and reinforcement of effi-

cient networks by dynamic reinforcement. Some key distinguishing features of this

work include: i) payoff based dynamics, in which each agent adapts according to re-

alized link rewards and costs; ii) incorporation of state dependent link establishment

costs in addition to link maintenance costs; and iii) reinforcement of efficient networks

through dynamic reinforcement. We presented various characterizations and proper-

ties of Nash network configurations, in terms of the structure of their connectivity

or the distances between nodes. We also provided accompanying convergence results

that show how these network configurations can be the outcome of a learning pro-

cess. Finally, we illustrated the utility of this approach in topology control of wireless

ad-hoc sensor networks.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This thesis was a small contribution to the problem of equilibrium selection in coor-

dination problems for multiagent systems. Our objective was to model interactions

among agents that are adaptive and robust to possible environmental changes. We

accomplish that by considering a learning approach where agents learn their behavior

through time based on reinforcement learning (payoff-based dynamics). Agents do not

have access to the selections and strategies of other agents which makes the proposed

techniques attractive for designing multiagent coordination problems as demonstrated

clearly in the example of distributed network formation.

In Chapter 3, we assumed that agents apply a reinforcement learning scheme

which is a small modification of the classical reward-inaction scheme of learning au-

tomata. We showed that when agents are involved in a coordination problem multiple

equilibria might emerge as the asymptotic outcome of the learning algorithm. For the

unperturbed reinforcement scheme, we were able to show that the learning process

converges w.p.1 to the set of vertices of the probability space (for both constant and

diminishing step size sequences).

For the perturbed reinforcement scheme with constant step size and for a special

class of coordination games, we showed that any small neighborhood of the vertices

of the probability space is a recurrent set of the process when the perturbation is

sufficiently small. Further characterization of the possible asymptotic outcomes can
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be based on ODE methods for stochastic approximations. We apply the ODE method

for the case of diminishing step size sequences, although the results are also valid for

constant step size (in the context of weak-convergence). According to this method,

the stochastic process converges with positive probability to a locally stable set of the

relevant ODE.1

In Chapter 4, we specialized our results for the case of coordination games. Be-

sides characterizing the possible outcomes of the process, our intention was to also

control its outcome. To this end, new forms of agent’s decision rules were introduced

that are based on feedback control. According to these rules, recent observations

count more in agent’s decisions than older observations. Under this new framework,

we showed that predictions of the final outcome of a coordination problem can be

changed considerably in a distributed way. In particular, although the reinforcement

scheme without dynamic reinforcement may converge to multiple outcomes, including

possibly non-efficient ones, the reinforcement scheme with dynamic reinforcement can

be designed so that it does not converge to non-efficient outcomes. Note also that

this is possible even when dynamic reinforcement is applied only by a single agent.

From the one hand, this demonstrates the utility of feedback control techniques in

distributed learning, while, on the other hand, it reveals the possible fragility of

agent-based simulation models.

The results where demonstrated in coordination games (which is a special class of

a coordination problem) and distributed network formation. In coordination games,

prior work has shown that the risk-dominant equilibrium “seems” to be the only

reasonable prediction, even when it is not payoff-dominant. Our intention here was to

show that transient phenomena in learning dynamics can be exploited in a distributed

manner to alter the convergence properties in a desirable way. In particular, it was

shown that the dynamic reinforcement scheme, when applied by a single agent, is able

1Defined in Chapter C.
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to destabilize the risk-dominant equilibrium independently of the number of agents

playing the game.

In Chapter 5, we analyzed the problem of distributed network formation under the

proposed framework of reinforcement learning, which is a problem of independent in-

terest. Prior learning models used for modeling network formation, such as best-reply

learning models, usually assume that each agent has access to the previous actions

of all other agents. The proposed model of reinforcement learning assumes minimal

amount of information available to each agent. Furthermore, we illustrated the flex-

ibility of this scheme to incorporate various design criteria, including dynamic cost

functions that reflect link establishment and maintenance, and distance-dependent

benefit functions. We showed that the dynamic process may converge to multiple

stable configurations (i.e., strict Nash networks), which need not emerge under alter-

native processes such as best-reply dynamics. Finally, we showed that in the case of

frictionless benefit flow (i.e., when there is no discount) a single agent can reinforce

the emergence of an efficient network through dynamic reinforcement.

The utility of the network formation model was also illustrated in the problem of

topology control for wireless ad-hoc networks. In particular, the problem is to design

distributed techniques that guarantee several modeling criteria, such as bounded node

degree, bounded internode distance, connectivity, energy efficiency and robustness to

possible failures. Under the proposed reinforcement scheme, we can design reward

functions that support stable configurations (strict Nash networks) with these crite-

ria. In particular, we showed that the node degree can be bounded by restricting

the actions set of each agent, the internode distance can be bounded by applying a

discount factor on the flow of benefits, while we found conditions under which Nash

networks are connected networks. Finally, the dynamic reinforcement scheme can

also be used to destabilize non-efficient network structures when the benefit flow is

assumed frictionless.
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6.2 Future directions

The analysis presented for equilibrium selection in the case of dynamic reinforcement

and distributed network formation in Chapters 4–5 was only local. A first attempt

towards the global characterization of convergence was presented in Chapter 3, where

the proposed algorithm (perturbed or unperturbed) was analyzed using martingale

convergence theorems. Recall that for the perturbed reinforcement scheme with con-

stant step size, we showed that any small neighborhood of the vertices of the prob-

ability space is a recurrent set of the process when the perturbation is sufficiently

small. This, however, does not ensure where the process will converge.

In order to characterize where the process will converge we may apply results

from stochastic approximations similar to the ones applied for diminishing step size

in Chapters 4–5. This analysis is based on weak convergence techniques and shows

that the probability that the process lies in an chain recurrent set of the corresponding

ODE goes to one as the step size approaches zero.

However, such a statement does not exclude the possibility that there are chain

recurrent sets that are other than pure Nash equilibria. In order to exclude that

possibility, we may apply techniques based on large deviations [DZ93], based on which

we can compute the robustness of each stable set to noise. The process will spend

most of its time to the stable set that is the most robust to noise, which constitutes

a different notion of stability, namely stochastic stability [FW84].

Simulation results has shown that certain Nash equilibria are more robust than

others. In particular, risk-dominant Nash equilibria are more robust than non-risk-

dominant equilibria when the perturbed reinforcement scheme with constant step size

is applied. In other words, the process spends most of its time at the risk-dominant

equilibrium (i.e., this equilibrium is stochastically stable). This property is attributed

to the fact that the risk-dominant equilibrium has the largest basin of attraction,
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where the basin of attraction corresponds to the smallest deviation cost from that

equilibrium, or equivalently, the largest eigenvalue of the linearized dynamics of the

corresponding ODE (as the analysis of Chapter 4 showed). Therefore, to guarantee

convergence to a “desirable” equilibrium, it is sufficient to make its basin of attraction

larger than the basin of attraction of all other equilibria. Thus, it is not really

necessary to destabilize those equilibria.

On the other hand, large deviations techniques do not seem promising when ap-

plied in large games (such as the network formation problem) under the proposed

reinforcement scheme. So far, stochastic stability results for infinite-space learning

dynamics have only been derived for games with small number of agents and actions,

e.g., the analysis under fictitious play dynamics in [Wil02], but the results were only

numerical. An analytical characterization of the global convergence properties of the

proposed reinforcement scheme is necessary. Such an analytical characterization will

also increase the utility of the proposed techniques into a large class of problems that

can fit into the framework of coordination problems.
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APPENDIX A

Martingales

A.1 Martingale convergence theorem

Let {X(k)}k≥0 be a sequence of real random variables on a probability space (Ω,F , P ).

Let Fk be a sequence of sub-σ-fields of F with

F0 ⊂ F1 ⊂ ...Fk−1 ⊂ Fk... ⊂ F (A.1)

and let X(k) be measurable with respect to Fk. Fk, for example, can be the σ-field

generated by random variables Y (0), Y (1), ..., Y (k), where the sequence {Y (k)}k≥0 is

also defined on (Ω,F , P ). We can consider Fk as containing the information available

at stage k. Also, X(k) is measurable with respect to Fk if it is determined by

{Y (0), Y (1), ..., Y (k)}. The definition of a martingale in terms of σ-fields may be

stated as follows:

Definition A.1.1 (Martingale) Let {X(k)}k≥0 be a sequence of random variables

defined on a probability space (Ω,F , P ) and let Fk be a sequence of sub-σ-field of F

satisfying equation (A.1). Then {X(k)} is called a submartingale with respect to {Fk}

if for all k

1. X(k) is measurable with respect to Fk,

2. E[X(k)+] <∞, where X(k)+ = max{0, X(k)}, and

3. E[X(k + 1)|Fm] ≥ X(m), for m ≤ k.
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Note that if {−X(k)} is a submartingale, then {X(k)} is a supermartingale. If both

{−X(k)} and {X(k)}, then {X(k)} is a martingale with respect to {Fk}.

Theorem A.1.1 (Martingale Convergence Theorem) (a) Let {X(k),Fk}k∈N be

a nonnegative supermartingale satisfying

sup
k≥0

E[X(k)] <∞.

Then there exists a random variable X∞ to which {X(k)} converges w.p.1, i.e.,

P [ lim
k→∞

X(k) = X∞] = 1.

(b) If {X(k),Fk}k∈N is a positive supermartingale and for some α > 1 the function

E[|X(k)|α] is bounded, then in addition to part (a),

lim
k→∞

E[X(k)] = E[X∞] = E[ lim
k→∞

X(k)].

For a submartingale {X(k)},

sup
k≥0

E[X(k)+] <∞⇒ sup
k≥1

E[|X(k)|] <∞.

Hence by the theorem, every non-positive submartingale, nonnegative supermartin-

gale, or martingale that is uniformly bounded from above converges with probability

1.

A corollary of Theorem A.1.1 is the following:

Corollary A.1.1 Under the conditions of Theorem A.1.1,

E[X(k + 1)−X(k)|X(0), X(1), ..., X(k)]→ 0 w.p.1 as k →∞.
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APPENDIX B

Convergence of Markov Processes

B.1 Discrete-time Markov processes

Let X(k), k = 0, 1, 2, ..., be a stochastic process with values in El (Euclidean l-

space). X(k) is a Markov process if the probability of an event, say X(k) ∈ Γ, given

X(s) = x is not affected if the behavior of the process up to time s is also known.

This probability, known as the transition probability of the Markov process, will be

denoted by P(X(k) ∈ Γ|X(s) = x). Clearly, P(X(k) ∈ Γ|X(s) = x) must be a

probability measure as a function of Γ and Bl-measurable as a function of x, where

Bl is the Borel σ-algebra of dimension l.

A transition function needs to satisfy the Chapman-Kolmogorov relations

P(X(k) ∈ Γ|X(s) = x) =

∫

A

P(X(u) ∈ dy|X(s) = x) · P(X(k) ∈ Γ|X(u) = y),(B.1)

where A ∈ Bl.

Definition B.1.1 (Markov process) Let P(X(k) ∈ Γ|X(s) = x) be a transition

function in A, A ∈ Bl. A process X(k), k = 0, 1, 2, ... in A is called a Markov process

with transition function P(X(k) ∈ Γ|X(s) = x) if, for s < u < k,

P [X(k) ∈ Γ|X(s), X(s+ 1), ..., X(u)] = P(X(k) ∈ Γ|X(u)) (a.s.)

A transition function P(X(k) ∈ Γ|X(s) = x) is said to be homogeneous if P(X(k+
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s) ∈ Γ|X(s) = x) is independent of s.

When dealing below with various problems related to a Markov process X(k),

k = k0, k0 +1, ..., for some k0 > 0, with values in El and transition function P(X(k) ∈

Γ|X(s) = x), we shall find it convenient to use operator ∆ defined on functions

V (t, x), x ∈ El, by

∆V (k, x) =

∫

P(X(k + 1) ∈ dy|X(k) = x) · [V (k + 1, y)− V (k, x)]. (B.2)

B.1.1 Markov processes and supermartingales

Martingales and supermartingales may be used as tools in studying the limiting be-

havior of sample functions of Markov processes.

Consider a Markov process X(k), k ≥ k0, in El. Consider also a sequence of

imbedded σ-algebras, F1 ⊂ F2 ⊂ ..., so that X(k) is Fk-measurable. Let τG denote

the first exit time of the sample function of the process from a domain G, and

τG ∧ k , min(τG, k).

Theorem B.1.1 Let V (k, x) be a nonnegative function, V (k, x) ∈ DL for k ≥ k0

and x ∈ D, such that

∆V (k, x) ≤ 0 (∆V (k, x) = 0)

for all these points (k, x), and EV (k0, X(k0)) <∞. Then

{Y (k) = V (τG ∧ k,X(τG ∧ k)),Fk}

is a supermartingale (martingale) for k ≥ k0.

Proof. See pg. 32 of [NH76]. �
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B.1.2 Exit of sample functions from a domain

It is important to have conditions under which a Markov process X(k) = X(k, ω),

k ≥ 0, with some initial distribution, will almost surely (i.e., with probability 1) leave

an open domain G in El in a finite time. We will assume that X(k) is a Markov

process with generating operator ∆ and arbitrary initial distribution.

Theorem B.1.2 Suppose that there exists a nonnegative function, V (k, x) in the

domain k ≥ 0, x ∈ G, such that ∆V (k, x) ≤ −ǫ(k) in this domain, where ǫ(k) is a

sequence such that

ǫ(k) > 0,

∞
∑

k=0

ǫ(k) =∞. (B.3)

Then a process X(k) leaves G in a finite time with probability 1.

Proof. Here we follow the proof of Theorem 5.1 in [NH76]. Let x be any point of

G. It will clearly suffice to prove the theorem for a process {X(k)}k. Denote the first

exit time of the sample functions of X(k) from G by τ . Set

W (k, x) = V (k, x) + β(k), (B.4)

where β(k) =
∑k−1

u=0 ǫ(u). It is clear, by (B.3), that

lim
k→∞

β(k) =∞.

In addition,

∆W (k, x) = ∆V (k, x) + ∆β(k) = ∆V (k, x) + ǫ(k) ≤ 0
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for k ≥ 0 and x ∈ G. Hence, by Theorem B.1.1, the pair

(W (τ ∧ k,X(τ ∧ k)),Fk), k ≥ 0,

is a supermartingale, and so, by Theorem A.1.1, a finite limit

lim
t→∞

W (τ ∧ k,X(τ ∧ k)) = η <∞ (B.5)

exists with probability one. Since V (k, x) is nonnegative, it follows from (B.4) and

(B.5) that limk→∞ β(τ ∧ k) also exists and is finite with probability 1. But, since

limk→∞ β(k) =∞, we conclude that the r.v. τ ∧ k is bounded a.s. as a function of k.

In other words, the process X(k) leaves G in a finite time with probability 1. �

The following corollary of the above theorem is important in cases we would

like to consider entrance of a stochastic process into the domain of attraction of an

equilibrium.

Corollary B.1.1 Let B be a subset of El, Bε(B) its ε-neighborhood,1 and Vε(B) =

El\Bε(B). Suppose there exists a nonnegative function V (k, x) ∈ DL in the domain

k ≥ 0, x ∈ El for which

∆V (k, x) ≤ −ǫ(k)ϕ(k, x), k ≥ 0, x ∈ El, (B.6)

where the sequence ǫ(k) satisfies (B.3) and ϕ(t, x) satisfies

inf
k≥T,x∈Vε(B)

ϕ(k, x) > 0 (B.7)

1The distance dist(x, B) from a point x to a set B is defined as dist(x, B) , infy∈B dist(x, y),
and Bε(B) = {x : dist(x, B) < ε}. We shall also write x→ B if dist(x, B)→ 0.
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for all ε > 0 and some T = T (ε). Then

P [lim inf
k→∞

dist(X(k), B) = 0] = 1.

Proof. First, we can show that for some ε1 > 0 the stochastic process enters Bε1
(B)

in finite time τ1 with probability 1.2 Then by taking 0 < ε2 < ε1, we can show

that the stochastic process will enter Bε2
(B) in finite time τ2 > τ1 with probabil-

ity 1. In this way, we can define a subsequence of time instants τ1, τ2, ... for which

dist(X(τn), B) < εn for all n = 1, 2, .... Therefore, the conclusion of the corollary

follows. �

Note that the corollary implies that the stochastic process enters an arbitrarily

small neighborhood of a set B infinitely often with probability one. Such a conclusion

is important when we are discussing convergence of stochastic processes.

2We can show that by following the proof of Theorem B.1.2.
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APPENDIX C

ODE Method for Stochastic Approximations (SA)

C.1 Convergence analysis for SA

Consider the stochastic approximation

x(k + 1) = x(k) + ǫ(k) · g(x(k), α(k)) (C.1)

that evolves in the domain R
r. We will assume that the step size sequence will satisfy

the fundamental condition

Assumption C.1.1
∑∞

k=0 ǫ(k) = ∞, ǫ(k) ≥ 0, ǫ(k) → 0, for k ≥ 0; ǫ(k) =

0, for k < 0.

Also, g(x(k), α(k)) denote the R
r-valued “observation” at time k that depends on the

current state x(k) and a noise term α(k). We assume that the noise term α(k) takes

values in some topological space A. Let F(k) denote the σ-algebra determined by

the initial condition x(0) and observations g(x(i), α(i)), i < k.

In general, we will consider a noise process {α(k)}k that is Markov state-dependent.

For each x, let P(·, ·|x) be a Markov transition function parameterized by x such that

P(·, A|·) is Borel measurable for each Borel set A in the range space A of α(k).

Suppose that the law of evolution of the noise satisfies

P [α(k + 1) ∈ ·|α(i), x(i), i ≤ k] = P(α(k), ·|x(k)), (C.2)
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where P(α, ·|x) denotes the one-step transition probability with starting point x and

parameterized by x. If (C.3) holds, the noise process {α(k)}k is called Markov state-

dependent.

In the stochastic recursions we will consider in this thesis, we will only encounter

the special case where

P [α(k + 1) ∈ ·|α(i), x(i), i ≤ k] = P(·|x(k)), (C.3)

which implies that the “next” noise depends only on the “current” state. In this case,

the noise process will be called “state-dependent”.

The analysis of the stochastic approximation (C.1) when the noise is state-dependent,

as described by (C.3), coincides with the analysis of the stochastic approximation with

a fixed-x noise process. In particular, if P(·|x) is the transition function of a Markov

chain; the fixed-x noise process, denoted by αk(x), will correspond to the random

variables of that chain. We expect that the probability law of this chain for given x is

close to the probability law of the true noise {α(k)}k if x(k) varies slowly around x,

and hence that the mean ODE can be obtained in terms of this fixed-x chain. This

turns out to be the case. Of special interest is the fixed-x process {αi(x(k)), i ≥ k}i,

defined for each k with initial condition αk(x(k)) = α(k). Thus, this process starts

at value αk at time k and then evolves as if the parameter were fixed at x(k) forever

after.

Assumption C.1.2 supk E[|g(x(k), α(k))|] <∞

Assumption C.1.3 g(x, α) is continuous in x for each α.

Assumption C.1.4 There is a continuous function g(·) such that for x ∈ R
r, the

expression

vk(x, α(k)) =

∞
∑

i=n

ǫ(i)E[g(x, αi(x))− g(x)|α(k)]
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is well defined when the initial condition for {αi, i ≥ k} is αk(x) = α(k), and

vk(x(k), α(k))→ 0 w.p.1.

The convergence analysis of the stochastic process {x(k)}k will be expressed in

terms of the continuous time interpolation of x(k). A natural time scale for the

interpolation is defined in terms of the step size sequence. In particular, define t0 = 0

and tk =
∑k−1

i=0 ǫi. Define the continuous-time interpolation x0(·) on (−∞,∞) by

x0(t) = x(0) for t ≤ 0, and for t ≥ 0,

x0(t) = x(k), for tk ≤ t ≤ tk+1.

Define also the sequence of shifted processes xk(·) by

xk(t) = x0(tk + t), t ∈ (−∞,∞).

Proposition C.1.1 (Convergence of SA) Assume C.1.1, C.1.2, C.1.3 and C.1.4.

Then there is a null set N such that for ω /∈ N , the set of functions {xk(ω, ·), k <∞}

has a subsequence that converges to some continuous limit, uniformly on each bounded

interval. Let x(ω, ·) denote the limit of some convergent subsequence.

(a) If {x(k)}k is bounded with probability one, then for almost all ω, the limits

x(ω, ·) of convergent subsequences of {xk(ω, ·)} are trajectories of

ẋ = g(x) (C.4)

in some bounded invariant set and {x(k)} converges to this invariant set.

(b) If A ⊂ R
r is locally asymptotically stable in the sense of Lyapunov for (C.4)

and x(k) is in some compact set in the domain of attraction of A infinitely often with

probability ≥ ρ, then x(k)→ A with at least probability ρ.
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(c) Suppose there is a unique solution for each initial condition. There is a null

set N such that if ω /∈ N and if for points x and x

x(k) ∈ Bδ(x), x(k) ∈ Bδ(x), infinitely often (C.5)

for all δ > 0. Then x and x are chain connected.1 Thus the assertions concerning

convergence to an invariant or limit set of the mean ODE (C.4) can be replaced by

convergence to a set of chain recurrent points within that invariant or limit set.

Proof. This proposition is a special case of Theorem 6.1 in Chapter 6 of [KY97]. �

Note that for a noise process that satisfies (C.3), we have

E[g(x, αi(x)|ξ(k)] ≡ E[g(x, αi(x))] ≡ E[g(x, α(i))|x(i) = x] for all i ≥ k.

Therefore, if we define

g(x) , E[g(x, α(k))|x(k) = x]

then, the process {vk(x, α(k))}k is well-defined since it is identically zero. Thus, for a

stochastic approximation (C.1) where the noise sequence satisfies (C.3), we just need

to check assumptions C.1.2 and C.1.3 in order for Proposition C.1.1 to hold.

C.2 Non-convergence analysis for SA

Invariant sets of the ODE (C.4) may also include points that are linearly unsta-

ble. In practice, these points are often seen to be unstable points for the stochas-

tic recursion. However, this does not follow directly from the convergence result of

Proposition C.1.1. These points tend to be unstable for the recursion because of the

1We allow x = x.
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combination of the instability properties of the ODE near those points with the per-

turbing noise. Therefore, under appropriate “directional nondegeneracy” conditions

on the noise, instability theorems based on Lyapunov function or large deviations

methods can be used to prove the repelling property of the linearly unstable points

of the ODE (C.4).

Let D ⊆ R
r be an open subset of an affine subspace in R

r. Let g : D → TD be a

class C1, where TD is the translation of the affine subspace that contains the origin.

We rewrite the stochastic approximation (C.1) as

x(k + 1) = x(k) + ǫ(k) · g(x(k)) + ǫ(k) · ξ(k) (C.6)

where

ξ(k) , E[g(x(k), α(k))− g(x)|x(k) = x]. (C.7)

Note that E[ξ(k)|x(k)] = 0, and assume that it is such that x(k) always remain in D.

Let x∗ be a stationary point of the ODE (C.4), and suppose some eigenvalue of

gx(x
∗) has a positive real part. Then the point is said to be linearly unstable.

Proposition C.2.1 (Non-convergence of SA) Let the stochastic process {x(k) :

k ≥ 0} be defined so that it satisfies (C.6) for some sequence of random variables

{ξ(k)} as defined in (C.7). Let x∗ be any point of D with g(x∗) = 0, let B be a neigh-

borhood of x∗ and assume that there are constants ν ∈ (1/2, 1] and c1, c2, c3, c4 > 0 for

which the following conditions are satisfied whenever x(k) ∈ B and k is sufficiently

large:

1. x∗ is a linearly unstable critical point,

2. c1/k
ν ≤ ǫ(k) ≤ c2/k

ν,

3. E[(〈ξ(k), x〉)+|x(k) = x] ≥ c3/k
ν for every unit vector x ∈ TD,
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4. ξ(k) ≤ c4/k
ν ,

where (〈ξ(k), x〉)+ = max{〈ξ, x〉, 0}, and 〈ξ, x〉 denotes the inner product of ξ and x.

Assume g is smooth enough to apply the stable manifold theorem: at least C2. Then

P [x(k)→ x∗] = 0.

Proof. This proposition coincides with Theorem 1 in [Pem90]. �
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APPENDIX D

Proofs

D.1 Proofs of Chapter 3

D.1.1 Proof of Claim 3.6.1

According to the definition of the conditional expectation of the change in payoff, we

have

∆R(k) = E[R(α(k + 1))−R(α(k))|x1(k), x2(k)]

= E[x1(k + 1)TDx2(k + 1)− x1(k)
TDx2(k)|x1(k), x2(k)]

= E[[x1(k + 1)− x1(k)]
TD[x2(k + 1)− x2(k)]+

x1(k)
TD[x2(k + 1)− x2(k)] + [x1(k + 1)− x1(k)]

TDx2(k)|x1(k), x2(k)]

= E[δx1(k)
TDδx2(k) + x1(k)

TDδx2(k) + δx1
TDx2(k)|x1(k), x2(k)]

= E[δx1(k)
TDδx2(k)|x1(k), x2(k)] + x1(k)

TD∆x2(k) + ∆x1(k)
TDx2(k)

which completes the proof.

D.1.2 Proof of Proposition 3.6.2

When both automata apply the L̃R−I scheme, we have

E[δx1
TDδx2|x1(k), x2(k)]

= [ǫ(e1 − x1)]
TD[ǫ(e1 − x2)]x11x21(d11)

2 + [ǫ(e1 − x1)]
TD[ǫ(e2 − x2)]x11x22(d12)

2+

[ǫ(e2 − x1)]
TD[ǫ(e1 − x2)]x12x21(d21)

2 + [ǫ(e2 − x1)]
TD[ǫ(e2 − x2)]x12x22(d22)

2
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By expanding the first term of the above expression, we get

[ǫ(e1 − x1)]
TD[ǫ(e1 − x2)]x11x21(d11)

2 = ǫ2(d11 − d12 − d21 + d22)x11x12x21x22(d11)
2

Similarly, we get

[ǫ(e1 − x1)]
TD[ǫ(e2 − x2)]x11x22d12 = −ǫ2(d11 − d12 − d21 + d22)x11x12x21x22(d12)

2

[ǫ(e2 − x1)]
TD[ǫ(e1 − x2)]x12x21d21 = −ǫ2(d11 − d12 − d21 + d22)x11x12x21x22(d21)

2

[ǫ(e2 − x1)]
TD[ǫ(e2 − x2)]x12x22d22 = ǫ2(d11 − d12 − d21 + d22)x11x12x21x22(d22)

2

It is straightforward to show now that

E[δx1
TDδx2|x1(k), x2(k)] =

ǫ2x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2)

which completes the proof.

D.1.3 Proof of Proposition 3.6.3

Assume that automaton 1 has three actions, i.e., |A1| = 3, while automaton 2 has

two actions, i.e., |A2| = 2 actions. In this case, we have

E[δx1
TDδx2|x1(k), x2(k)]

= E[[x1(k + 1)− x2(k)]
TD[x2(k + 1)− x2(k)]|x1(k), x2(k)]

= E[[ǫR1(α1 − x1(k))]
TD[ǫR2(α2 − x2(k))]|x1(k), x2(k)]

= [ǫ(e1 − x1)]
TD[ǫ(e1 − x2)]x11x21(d11)

2 + [ǫ(e1 − x1)]
TD[ǫ(e2 − x2)]x11x22(d12)

2+

[ǫ(e2 − x1)]
TD[ǫ(e1 − x2)]x12x21(d21)

2 + [ǫ(e2 − x1)]
TD[ǫ(e2 − x2)]x12x22(d22)

2+

[ǫ(e3 − x1)]
TD[ǫ(e1 − x2)]x13x21(d31)

2 + [ǫ(e3 − x1)]
TD[ǫ(e2 − x2)]x13x22(d32)

2
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By expanding the first term of the above expression, we get

[ǫ(e1 − x1)]
TD[ǫ(e1 − x2)]x11x21(d11)

2

= ǫ2[(1− x11)(1− x21)d11 − x12(1− x21)d21 − x13(1− x21)d31−

(1− x11)x22d12 + x12x22d22 + x13x22d32]x11x21(d11)
2

= ǫ2[(x12 + x13)x22d11 − x12x22d21 − x13x22d31−

(x12 + x13)x22d12 + x12x22d22 + x13x22d32]x11x21(d11)
2

= ǫ2(d11 − d12 − d21 + d22)x11x12x21x22(d11)
2+

ǫ2(d11 − d12 − d31 + d32)x11x13x21x22(d11)
2

Similarly we derive the rest of the terms and we finally get

E[δx1
TDδx2|x1(k), x2(k)]

= ǫ2[x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2)+

x11x13x21x22(d11 − d12 − d31 + d32)((d11)
2 − (d12)

2 − (d31)
2 + (d32)

2)+

x12x13x21x22(d21 − d22 − d31 + d32)((d21)
2 − (d22)

2 − (d31)
2 + (d32)

2)]

By induction, for the general case of |A1| > 2 actions for the automaton 1 and

|A2| = 2 actions for the automaton 2, it can be shown that if:

E[δx1
TDδx2|x1(k), x2(k)] =

ǫ2
|A1|−1,|A1|−1

∑

i,j=1,i6=j

x1ix1jx21x22(di1 − dj1 − di2 + dj2)((di1)
2 − (dj1)

2 − (di2)
2 + (dj2)

2),

then,

E[δx1
TDδx2|x1(k), x2(k)] =

ǫ2
|A1|,|A1|

∑

i,j=1,i6=j

x1ix1jx21x22(di1 − dj1 − di2 + dj2)((di1)
2 − (dj1)

2 − (di2)
2 + (dj2)

2),
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Thus, the expression holds for arbitrary values of |A1|.

The same arguments carry over to the case where |A2| strategies are available to

the second agent. For example, if we consider the case of |A1| = |A2| = 3, then we

have:

E[δx1
TDδx2|x1(k), x2(k)]

= ǫ2[x11x12x21x22(d11 − d12 − d21 + d22)((d11)
2 − (d12)

2 − (d21)
2 + (d22)

2)+

x11x13x21x22(d11 − d12 − d31 + d32)((d11)
2 − (d12)

2 − (d31)
2 + (d32)

2)+

x12x13x21x22(d21 − d22 − d31 + d32)((d21)
2 − (d22)

2 − (d31)
2 + (d32)

2)+

x11x12x21x23(d11 − d13 − d21 + d23)((d11)
2 − (d13)

2 − (d21)
2 + (d23)

2)+

x11x13x21x23(d11 − d13 − d31 + d33)((d11)
2 − (d13)

2 − (d31)
2 + (d33)

2)+

x12x13x21x23(d21 − d23 − d31 + d33)((d21)
2 − (d23)

2 − (d31)
2 + (d33)

2)+

x11x12x22x23(d12 − d13 − d22 + d23)((d12)
2 − (d13)

2 − (d22)
2 + (d23)

2)+

x11x13x22x23(d12 − d13 − d32 + d33)((d12)
2 − (d13)

2 − (d32)
2 + (d33)

2)+

x12x13x22x23(d22 − d23 − d32 + d33)((d22)
2 − (d23)

2 − (d32)
2 + (d33)

2)]

In the more general case of |A1| > 2 and |A2| > 2 actions, the expression for

E[δx1
TDδx2|x1(k), x2(k)] contains [|A1| (|A1| − 1)][|A2| (|A1| − 1)]/4 terms.

D.2 Proofs of Chapter 4

D.2.1 Proof of Proposition 4.5.1

(sketch) We first linearize the first part of the vector field, g(x, y, ρ). The partial

derivatives of g with respect to x are captured by the matrix Aλ,γ . It is straightforward

to show that the non-diagonal blocks of Aλ,γ are factored by λ. In particular, the

change of the vector field of agent i ∈ I, gi(·, ·, ·), when agent l ∈ I\{i} perturbs his
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strategy is captured by

Aλ,γ
il = lim

h→0

gi(x̃l + hδxl, x̃−l, ỹ, ρ̃)

h
,

where we write the perturbed strategy profile as (x̃l+hδxl, x̃−l, ỹ, ρ̃) for some arbitrar-

ily small h > 0, since only the state of agent l is perturbed. For convenience, we will

use the notation ∆xl , (x̃l +hδxl, x̃−l, ỹ, ρ̃). Note also that the vector δxl determines

the direction of the perturbation, and assume for now that x̃l + hδxl ∈ ∆(|Ai|).

The sth entry of the expected reward vector of agent i at ∆xl is

ris(∆xl) = [(1− λ)x̃is + λ/ |Ai|] · vi(s,∆xl),

where vi(·,∆xl) is the conditional reward (4.4) of agent i evaluated at ∆xl. We can

write

vi(s,∆xl) = vi(s, (x̃, ỹ, ρ̃)) + h(1 + γl)(1− λ)
∑

q∈Ai

vi(s, (x̃, ỹ, ρ̃)|αl = q)δxlq,

where vi(s, (x̃, ỹ, ρ̃)) is the conditional reward (4.4) evaluated at the equilibrium z̃ =

(x̃, ỹ, ρ̃), which from now on we simply denote by vi(s, z̃). Also, vi(s, (x̃, ỹ, ρ̃)|αl = q)

denotes the conditional reward (4.4) evaluated at the equilibrium z̃ = (x̃, ỹ, ρ̃) given

also that agent l selects action q.

The expected component sum of the reward vector is

Ri(∆xl) ,
∑

s∈Ai

ris(∆xl),

which implies that the sth entry of the vector field of agent i at ∆xl will be

gis(∆xl) = ris(∆xl)− Ri(∆xl) · x̃is.
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If we replace the expected reward terms in the above expression, divide by h, and

take the limit as h→ 0, we take a quantity that is factored by λ, so that

Aλ,γ
il = λW λ,γ

il , l ∈ I\i,

for some matrix W λ,γ
il whose entries are of order of the reward function and it satisfies

limλ→0 λW
λ,γ
il = 0.

We now compute the diagonal blocks of the Jacobian matrix, Aλ,γ
ii , i ∈ I, that is

Aλ,γ
ii = lim

h→0

gi(x̃i + hδxi, x̃−i, ỹ, ρ̃)

h
,

where the perturbed strategy profile is (x̃i + hδxi, x̃−i, ỹ, ρ̃) for some arbitrarily small

h > 0, since only the state of agent i is perturbed. Again, for convenience, we will

use the notation ∆xi , (x̃i + hδxi, x̃−i, ỹ, ρ̃).

In this case, the expected reward of agent i is

ris(∆xi) = [(1− λ)(x̃is + (1 + γi)hδxis) + λ/ |Ai|]vi(s, z̃),

for all s ∈ Ai. Also, the component sum of the expected reward vector is Ri(∆xi) =
∑

s∈Ai
ris(∆xi). The corresponding entries of the vector field will be

gij∗(∆xi) = −[1 + (1 + γi)hδxij∗(i)]vi(j
∗, z̃)hδxij∗

−
∑

q∈Ai\{j∗}

(1 + γi)hδxiqvi(q, z̃)(1 + hδxij∗) + λ×,

and, for any s ∈ Ai\{j∗},

gis(∆xi) = [−vi(j
∗, z̃) + (1 + γ)vi(s, z̃)]hδxis

−
∑

q∈Ai

(1 + γi)hδxiqvi(q, z̃)hδxis + λ×,
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where × denotes quantities that are factored by terms of the form hδxis, s ∈ Ai.

If we divide by h and take the limit as h → 0, we conclude that the Jacobian

matrix Aλ,γ
ii can be written as

Aλ,γ
ii = Aγ

ii + λW λ,γ
ii ,

where W λ,γ
ii is a matrix whose entries are of order of the reward function, therefore

bounded, and it satisfies limλ→0 λW
λ,γ
ii = 0. Also,

Aγ
ii = Ui





−vi(j
∗, z̃) row{−(1 + γi)vi(s, z̃)}s 6=j∗

0 diag{−vi(j
∗, z̃) + (1 + γi)vi(s, z̃)}s 6=j∗



UT
i

for some unitary matrix Ui in R
|Ai|×|Ai| which rearranges the sequence of states so

that action j∗ corresponds to the first row.

Regarding the evaluation of matrix Bλ,γ, it is straightforward to show that its

non-diagonal blocks are factored by λ. Its diagonal blocks are defined by

Bλ,γ
ii , lim

h→0

gi(x̃, ỹi + hδyi, ỹ−i, ρ̃)

h
,

where the perturbed strategy profile is (x̃, ỹi + hδyi, ỹ−i, ρ̃), which will be denoted by

∆yi. In this case, the sth entry of the expected reward function is given by

ris(∆yi) = [(1− λ)(x̃is − γihδyis) + λ/ |Ai|]vi(s, z̃).

We conclude that the Jacobian matrix Bλ,γ
ii can be written in the following form:

Bλ,γ
ii = Bγ

ii + λV λ,γ
ii ,

where V λ,γ
ii is a matrix whose entries are of the order of the reward function, and it
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satisfies limλ→0 λV
λ,γ
ii = 0. Also,

Bγ
ii = Ui





0 row{γivi(s, z̃)}s 6=j∗

0 diag{−γivi(s, z̃)}s 6=j∗



UT
i .

As far as the partial derivatives of g with respect to ρ are concerned, it is straight-

forward to show that are zero. In particular, any perturbation of ρ about an equi-

librium point (x̃, ỹ, ρ̃) perturbs only the feedback gain γi(·). However, the feedback

gain multiplies x − y, which at an equilibrium is identically zero, and therefore any

perturbation of ρ does not perturb g.

The second part of the vector field, x − y, is linear and the computation of the

partial derivatives is straightforward. It is also straightforward to show that partial

derivative of the last part of the vector field R(z)− ρ with respect to ρ is simply −I.

So far, we have not taken into account that the perturbations δxi and δyi belong

to the invariant subspace of the unit vector. Consider an orthonormal matrix N as

defined by (4.11) and (4.12). Then, the linearization (4.10) has the system matrix of

(4.13).
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Index

action, 12

profile, 13

set, 12

agent, 1

aligned interest coordination game, see

game with aligned interests

best-reply, 20

dynamics, 18

convention, see coordination equilibrium

coordination equilibrium

definition, 4, 14

strict, 14

coordination game

definition, 6, 15

coordination problem, 3

definition, 5, 15

examples, 6

deviation cost, 17

efficient equilibrium, see payoff-dominant

equilibrium

equilibrium, 3

proper, 5

strict, 5

evolutionary stable strategy, 28

fictitious play, 18

game, 3

definition, 13

game of pure coordination, 5

game with aligned interests, 53

definition, 5, 14

game with identical interests, 45

imitation dynamics, 18

learning automata, 35

perturbed, 54

learning dynamics, 17

mean dynamics, 59

multiagent system, 2

mutation rate, 55

Nash equilibrium, 3

definition, 13

pure, 14

strict, 14

network

connectivity, 112

efficient, 117

Nash, 121

value, 117

network formation, 98

ODE method, 59

one-way benefit flow, 111
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payoff, 12

combination, 13

matrix, 3

profile, 13

payoff-based algorithms, 31

payoff-dominant equilibrium

definition, 15

player, see agent

probability

simplex, 13

pure strategy

profile, 13

reinforcement learning, 18, 35

repeated game, 17

replicator dynamics, 18

risk factor, 16

risk-dominant equilibrium

definition, 16

social evolutionary models, 106

Stag-Hunt game, 6

stationary points, 71

stochastic stability, 149

stochastically stable

convention, 21

strategic interaction, 3

strategy, 13

mixed, 13

profile, 13

pure, 13

symmetric game, 16

unit vector, 13

utility, see payoff

variable-structure stochastic automata,
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