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Linear-Programming-Based

Multi-Vehicle Path Planning with Adversaries
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Master of Science in Mechanical Engineering

University of California, Los Angeles, 2004

Professor Jeff S. Shamma, Chair

Coordination is of vital importance in multi-vehicle systems and is always a chal-

lenge for control engineers. In this thesis, a linear-programming-based path planning

algorithm is developed for deriving optimal paths for a group of autonomous vehicles

in an adversarial environment, such as the RoboFlag competition. In this method,

both friendly and enemy vehicles are modelled as different resource types in an arena

of sectors. Simple model simplifications are introduced to allow the use of linear

programming in conjunction with a receding horizon implementation for vehicle path

planning. Since the enemy’s future moves are unknown, various stochastic models

based on their current position and/or velocity are used to describe their possible

future trajectories. Several objective functions are examined against various enemy’s

feedback laws, while their utility is tested in the “Cornell RoboFlag Simulator.” Re-

sults show that a linear-programming-based planning in combination with a simple

enemy’s model can be used for effective multi-vehicle path planning in an adversarial

environment.
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CHAPTER 1

Introduction

1.1 Motivation

The main features of autonomous control systems, such as robotic systems, are deter-

mined by the need to accept high level descriptions of tasks and execute them without

any human intervention. These high level descriptions of commands determine the

goal of the autonomous control system rather than the way in which this goal will be

accomplished.

More specifically, repeatability of actions is not the main purpose of today’s robotic

systems. Early robot designs were primarily used in applications, such as manufac-

turing, where their actions were always pre-specified, while most of the times their

tasks did not include any unexpected events. In such applications, robots must follow

specific paths, while an inner feedback control loop usually guarantees small tracking

errors.

However, in modern robotics applications like navigation or obstacle avoidance a

higher level of control objectives is necessary. For example, in an obstacle avoidance

problem a high level control objective would be the real-time derivation of a “safe”

path, so that robots avoid all the obstacles in the environment. On the other hand,

minimization of the tracking error is considered as a low level control objective. In

other words, hierarchy of the control objectives in modern robotics applications is

important.

The distinction between the different levels of control objectives is usually deter-
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mined by the different types of uncertainty which the controller needs to accommo-

date. For example, uncertainties like parametric plant uncertainty, unmodelled plant

dynamics, disturbance signals and sensor noise are some of the most important hand-

icaps in achieving optimal response in a tracking task. Such types of uncertainty can

be characterized as a low uncertainty level.

On the other hand, in problems like navigation in domestic environments, en-

vironmental conditions change all the time and as a result the uncertainty level is

higher. A more complicated problem could involve a group of adversaries that try

to prevent robots from completing their task. In that case, robots must be able not

only to complete their task, but also to avoid being harmed from the adversaries. In

other words, in such environments the planning problem becomes more difficult and

a higher control level is necessary.

Although the problem of eliminating the effect of low uncertainty level types has

extensively been studied, the problem of a higher control level, such as multi-vehicle

coordination, in the face of higher uncertainty levels, such as continuous change of the

environmental conditions, is still an open issue. In particular, although this problem

can be formulated as an optimization problem, inclusion of the high uncertainty level

and real time derivation of the optimal solution are some of the most important

challenges in multi-vehicle coordination.

In such applications, it may also be preferable to use a large number of robots.

For example, due to unexpected events several damage can be caused to the control

devices. Having several robots working on the same task maximizes the chances

that the project will be completed properly, since the loss of some robots does not

affect the rest of them. Although this system is more flexible due to the “strength

in numbers”, more complicated control laws must be used. The robots must be able

to complete their task without any human intervention and independently of the

possible uncertainties of the environment.
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In conclusion, the most important features that contribute to the challenge of

multi-vehicle control systems are

• hierarchy of control objectives and distinction between high and low control

level

• formulating an optimization problem that guarantees multi-vehicle coordination

• dealing with uncertainty and its inclusion to the optimization problem

• dealing with the complexity of the optimization problem when the number of

vehicles increases

1.2 Applications

Autonomous robots have already been used to perform missions in hazardous envi-

ronments, such as exploration of Mars and operations in nuclear power plants. One

of the these applications is the development of more intelligent Unmanned Aerial

Vehicles (UAVs). The main objective is to arrive at the given target within the

prespecified time, while maximizing the safety of the UAVs. Future UAVs will be

designed to make tactical decisions autonomously and will be integrated into teams

that coordinate to achieve high-level goals.

Moreover, a significant challenge in the high level control logic is the RoboFlag

compeptition, which is described by D’Andrea and Murray in [12]. Two teams of

robots compete to each other in a game where each team’s objective is both to capture

the opponent’s flag and to thwart opponents from capturing its own flag. Due to a

limited communications rate and a limited information sensing, this game provides a

test-bed for high level control of multivehicle systems.

Both UAVs’ coordination and RoboFlag competition addresses some of the most

important issues of multi-vehicle control systems, such as hierarchy of control objec-

3



tives. More specifically, a quite simple architecture for cooperative control consists of

two control levels, the vehicle control level and the team control level. In the vehicle

control level (low control level) the vehicle tracks the desired trajectory imposed by

the team control level (high control level). Several other architectures can be used

depending on the complexity of the system, such as the one described by Chandler

in [9].

Furthermore, in both applications, uncertainty of the environment plays an im-

portant role in designing optimal paths, while a large number of vehicles or a complex

information structure increases the complexity of the path planning. Therefore, the

choice of an efficient path planning scheme, which usually is a complex optimization

problem, is vital for the efficiency of the autonomous control system.

1.3 Multi-vehicle path planning

The uncertainty of the environment and the complexity of a multi-vehicle control

system creates several problems in the path planning scheme, or, in other words, in

the computation of the optimal trajectories of the vehicles. In particular, such an

optimization problem must provide

• a team-optimal solution

• on-line inclusion of all possible uncertainties of the environment

• computational efficiency

To this end, most of the recent work on multi-vehicle path planning focuses on

seeking a method that will provide the above three characteristics. However, usually

these type of optimization problems is more difficult to solve than Lagrange variational

problems. For this reason, researchers have resorted to several simplifications, such as

4



discretizing of time and open-loop control. On the other hand, these simplifications do

not exclude the case that the attendant optimization problem will not be large-scale

and untractable.

Therefore the derivation of an efficient multi-vehicle path planning is one of the

greatest challenges for the control engineers. Some of the optimization methods that

have been used for multi-vehicle path planning are based on

• Coordination variables

• Voronoi-based polygonal paths

• Model predictive control

• Mixed-integer linear programming

• Dynamic programming

1.3.1 Coordination variables

This method of cooperative control is primarily based on the notion of coordination

variable and coordination function. A general approach is introduced by McLain and

Beard in [27]. According to this approach, the information that must be shared to

facilitate cooperation is collected into a single vector quantity called the coordination

variable.

The second main ingredient of this cooperative control strategy is the notion of a

coordination function. The idea is to quantify how changing the coordination variable

impacts the individual myopic objectives, and then to use this information to modify

the coordination variable (e.g. the coordination function describes the cost to an

individual UAV of achieving different values of the coordination variable that are

feasible for the UAV).
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McLain and Beard, [27], also provide a formal mechanism for introducing the

type of team feedback that coordination function allow. Based on the team optimal

coordination variable, UAV trajectories are determined in a decentralized fashion on

the individual UAVs. This decomposition of the cooperative path planning results in

significant simplification of team-level planning process and a substantial reduction

in the volume of information communicated among UAVs.

Several simulations are shown in [27], where UAVs’ objective is to avoid several

threats while meeting the timing constraints imposed by their mission. Although this

approach introduces an efficient means for formulation and solution of team-optimal

cooperation problems, the location of the considered threats are deterministically

known, i.e., uncertainties of the environment are not taken into account.

1.3.2 Voronoi-based polygonal paths

The majority of the papers on mission planning of UAVs construct a Voronoi-based

polygonal path from the currently known locations of the threats to generate an initial

path. A feasible flight trajectory is ensured by joining the Voronoi edges with arcs,

where the radius is determined by a pre-specified vehicle turning radius. Cooperative

classification is the task of optimally and jointly using multiple vehicles’ sightings to

maximize the probability of correct target classification.

Taken in different combinations, the edges of the Voronoi diagram provides a set

of paths from the starting point to the target. Among those, Chandler and Pachter

in [7] choose the lowest-cost flyable path, while Chandler in [9] chooses the path that

minimizes exposure to radar.

Then the initial path should be refined to make sure that it is within the dynamic

constraints of the UAV. Several different methods are used for this purpose, such as

discretizing and smoothing by McLain and Chandler in [26], and virtual mass-virtual

force approach by Bortoff in [5]. It is also assumed that the location of the threats
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and their effects are deterministically known, even in the case of pop-up threats, so

the effects of uncertainties in the locations of the radar sites are not considered.

Instead of deterministically specifying the locations of the threats, Dogan in [14]

introduces a probabilistic approach that can be applied to several stages of mission

planning of UAVs. According to this approach, a probability of threat due to multiple

sources at a given position is assumed to be known and the chosen path minimizes

the probability of getting disabled for a UAV to fly to a target through an area of

threats.

Although the problem can be set up as a variational calculus problem, due to tech-

nical difficulties, Dogan develops a flight strategy that is parameterized to change the

weighting of finding a shorter path or finding a path that will give smaller probabil-

ity of getting disabled. Moreover, the paths are generated without discretizing the

area of operation. However, there are several problems that arise by following this

approach. In particular, global strategies might be computationally inefficient, while

simulation experiments showed that the path generated by the strategy might get in

a limit cycle close to the target position, but not close enough to attain it.

Moreover, Jun and D’Andrea in [21] propose a path planning algorithm based

on a map of the probability of threats (adversarial environment), which can be built

from a priori surveillance data. A path planning method for UAVs is proposed using

a probability map. The approach in this method is similar to those in [5] and [8] in

that they decompose the problem into two steps - first the generation of a preliminary

polygonal path by using a graph, and then a refinement of the path. They also

consider the effects of moving threats, changes in the probability map, and perform

an analysis of the effects of refinement on the initial path.
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1.3.3 Model predictive control

Several classes of multi-vehicle systems can be modelled as hybrid systems, namely

hierarchical systems constituted by dynamical components and logical/discrete com-

ponents. Especially in the case where dynamical and logical facts are dramatically

interdependent, one of the suggested approaches to designing feedback controllers is

based on model predictive control described by Bemporad and Morari in [3].

More specifically, in [3] a predictive control scheme is proposed which is able

to stabilize systems described by linear dynamic equations subject to linear mixed-

integer inequalities, i.e., inequalities involving both continuous and binary variables.

Model predictive control is based on the receding horizon philosophy according to

which a sequence of future control actions is chosen according to an optimization

problem which is based to a prediction of the future evolution of the system. However,

this sequence of future control actions is applied until a new measurement of the

output of the system is available.

It is preferable to use this method when the prediction of the future evolution of

the system cannot be accurate due to several reasons, such as unknown future distur-

bances. In this case, it is desirable to be able to rerun the optimization and uplink

the new solution, thus achieving the benefit of feedback action. Due to the presence

of integer variables, the optimization could be a mixed integer quadratic programming

(MIQP) problem, [3]. For some classes of multi-vehicle systems this optimization

procedure is a mixed integer linear programming (MILP) problem, which has been

extensively used for multi-vehicle control tasks and is examined in the following sec-

tion.

Finally, model predictive control has also been used in multi-vehicle formations,

[15]. However, the problem of multi-vehicle formations will not be examined in this

thesis, since we restrict our attention to multi-vehicle path planning with adversaries.
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1.3.4 Mixed-integer linear programming (MILP)

According to this procedure, the system is composed of continuous and discrete states

(a hybrid system) with linear dynamics subject to inequality constraints and logical

rules. In this formulation robot dynamics are modelled with second order differential

equations. The resulting optimization problem is converted to a MILP.

Two methods are compared by Richards and Bellingham in [31] for solving the op-

timization that combines task assignment, subjected to UAV capability constraints,

and path planning, subjected to dynamics, avoidance and timing constraints. The

first method expresses the entire problem as a single MILP. This method is guaran-

teed to find the globally optimal solution to the problem, but it is computationally

intensive.

The second method employs an approximation for rapid computation of the cost

of many different trajectories. This enables the assignment and trajectory problems

to be decoupled and partially distributed, offering much faster computation. The

approximate method offers much faster solution times, but could yield suboptimal

results. The final problem is again a MILP problem. With six vehicles, twelve way-

points, and numerous no-fly-zones (obstacles), this problem is too large to be solved

by the first method in any practical computation time. However, the approximate

method found the solution in 27 seconds.

The utility of MILP in a simplified version of the RoboFlag competition, the

“RoboFlag drill”, is examined by Earl and D’Andrea in [16] and [17]. The strategy

is implemented with a centralized controller with perfect knowledge of the system,

perfect access to all states, and with the ability to transmit control signals to the

robots instantaneously. The objective is to compute a set of control inputs that

minimizes the number of opponents that enter our team’s protected zone over the

duration of the game. Since the opponents move along a straight line with constant
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velocity, their motion and future positions are deterministically known. Moreover,

the procedure is limited computationally, since the problem does not scale well with

increased number of agents.

In [34], Schouwenaars presents an approach to fuel-optimal path planning of mul-

tiple vehicles using a combination of linear and integer programming. The problem

is to find the optimal path between two states for a single vehicle or a group of ve-

hicles. An approximate model of aircraft dynamics using only linear constraints is

developed, enabling the MILP approach to be applied to aircraft collision avoidance.

This path is optimized with respect to both fuel and/or time, and must ensure that

the vehicles do not collide with each other or with obstacles, which can be fixed or

moving according to a predefined motion.

An extension to this method is given by Richards and How in [32]. This research

was driven by two major applications: air traffic management and Unmanned Aerial

Vehicles (UAVs). According to this method, plume impingement constraints are also

included in the MILP optimization problem.

1.3.5 Dynamic programming

Flint and Polycarpou in [18] present a stochastic decision process formulation for

cooperative control among a team of distributed, uninhabited air vehicles (UAVs)

which leads to a solution based on dynamic programming. The goal of each air

vehicle in the search problem is to move over the environment such that, at the end

of the search, the maximum amount of information about the environment has been

gained by the team of vehicles. The path planning problem is discretized in time by

allowing the vehicle to only make decisions at discrete time intervals.

According to Flint and Polycarpou dynamic programming provides a convenient

modelling and analytical tool that many of the other, more intuitive or heuristic, ap-

proaches sometimes lack. For example, dynamic programming can achieve a probably
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optimal global solution to the problem, at least in theory. In practice this is rarely the

case, since this may be computationally infeasible in the absence of further structural

properties, but dynamic programming can nevertheless serve as a blueprint for nearly

optimal solutions.

A strict dynamic programming approach will have to compute to the very end of

the vehicle’s search the state, which would include every possible decision it could

make. Since this state is a location and path on a map, it is natural to view this as a

line extending behind the vehicle, connecting all the points the vehicle has travelled,

and to view the planning of the vehicle as a tree starting from the vehicle’s current

location. This tree would then grow exponentially as the depth of the search (the

number of steps ahead planned) increases. This quickly becomes intractable when

the idealistic assumption of unlimited computation is removed.

Flint and Polycarpou use some simplified assumptions, such as a limited look-

ahead policy. However, the introduction of the limited look-ahead policy can produce

a suboptimal solution, because of the now limited scope of the vehicle’s planning.

Adding utility functions to the cost function allows for reducing these so-called horizon

problems.

Expanding the formulation to include the presence of other vehicles, each vehicle

can no longer correctly calculate where the other vehicles are going to be, because

of the limited look-ahead and the limited communication assumptions. Calculating

probabilities about the next positions of the other vehicles planning tree is imprac-

tical in the face of the computational complexity requirements. According to Flint

and Polycarpou, a possible solution could be the assumption that the probability

distribution has some structure in space. This structure can be simplified into several

spatial regions, where each region represents a certain fixed probability of the vehicle

causing an interference.
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1.3.6 Remarks

Summarizing, deriving optimal paths for a multi-vehicle system in an unknown en-

vironment is still an open issue. All the previously discussed optimization methods

does not include efficiently the unknown uncertainties of the environment. For exam-

ple, calculating probabilities of the location of the threats in the dynamic program-

ming approach is computationally impractical, while in case of the mixed-integer-

programming or coordination-variables approach is not possible. Moreover, methods

that are based on Voronoi polygonal paths can include only known probability dis-

tributions of the threats that are not updated online.

Therefore, finding an optimization method that will provide both online inclusion

of the environment’s uncertainties and computational efficiency is a great challenge

for control engineers.

1.4 Objective of the thesis

This thesis is a small contribution to the problem of multi-vehicle path planning in an

adversarial environment. To this end, we explore the utility of linear programming

for trajectory planning in multi-vehicle control systems with adversaries. Several

complicated multi-vehicle tasks are considered which are versions of the “Cornell

RoboFlag competition”.

Roughly speaking, these tasks involve two teams of robots, defenders and attack-

ers, whose objective is the minimization or maximization of the number of robots

that infiltrate a protected area, respectively. In such a game, coordination is of vital

importance since either defenders or attackers must accomplish their goal with the

minimum possible losses or the maximum possible gain, respectively.

However, at the same time prediction of the opponent’s move and its inclusion

to the optimization problem is necessary for computing efficient paths. Under these
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conditions, this method could be really useful for efficient path planning in any multi-

vehicle control task that include adversaries or unknown uncertainties.

1.5 Thesis outline

In Chapter 2, we construct a discrete-time state-space representation for the evolution

of resources in an arena of sectors, which is a linear system. This model is commonly

used in battlefield management, where proper arrangement of friendly resources is

important.

In Chapter 3, the state-space representation of the resource allocation model is

expanded in order to include the case that adversarial resources are also evolve in

the same arena of sectors. We model enemy resources to follow similar state space

equations as those of friendly resources, since they satisfy the same constraints as the

friendly resources. We transform the problem of maximizing the enemy attrition losses

into a large-scale optimization problem. In particular, we show that this problem can

be approximated as a linear programming optimization problem and implemented in

a receding horizon manner.

In Chapter 4, we explore the utility of the linear-programming-based planning for

friendly resources allocation, described in Chapter 3, in deriving optimal paths for

multi-vehicle control systems with adversaries. We consider the RoboFlag competi-

tion which involves two teams of robots with opposing interests, the defenders and the

attackers. We derive control algorithms for both defense and attack that are based

on the linear-programming-based planning for resource allocation. In this case, both

defenders and attackers are modelled as different resource types in an arena of sec-

tors. Moreover, since adversaries are modelled as state-dependent, various stochastic

feedback laws based on their current position and/or velocity could describe their

possible future attitude, which is included in the optimization.
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In Chapter 5, the linear-programming-based multi-vehicle path planning for de-

fense and attack derived for the RoboFlag competition in Chapter 4 is applied to the

“Cornell RoboFlag Simulator” and to a RoboFlag simulator created in Matlab. We

design several versions of the original RoboFlag competition and we test these control

algorithms for both their effectiveness and computational efficiency.
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CHAPTER 2

Resource Allocation Model

2.1 Introduction

In this chapter, we construct a model that describes the evolution of several resources

in an arena of sectors. This model is motivated by the “SEADy storm” paradigm,

which is described by Kott in [23]. It describes the movement and engagement of

friendly and enemy forces which are represented as various resource types. According

to this model, the battlefield is divided into a collection of sectors, while actions are

undertaken in a discrete-time manner.

The state of the model consists of the level of a particular resource type per sector.

It turns out that this model is a large-scale linear flow subject to various positivity

constraints. Our final objective is to use this model for describing situations where

friendly and enemy resources are engaged in an arena of sectors. The reason for this

choice is grounded on the linearity of this model that allows for using linear objective

functions in an optimization problem for friendly planning.

2.2 State-space representation

2.2.1 Selection of the states

Let us consider the simple case of an arena of only two sectors, s1 and s2, see Figure

2.1.
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s1 s2

Figure 2.1: Arena of two sectors.

Assume that there are two types of resources, r1 and r2, which can move from one

sector to another. We will also assume that each resource type cannot be transformed

to another resource type, i.e., resource type r1 cannot be transformed to resource type

r2 and vice versa.

The level of each resource type per sector describes the current state of the overall

system. Accordingly, we define as state vector of this system to be the vector whose

entries are the levels of resource types per sector. The entries of the state vector will

be called states. In other words, the state vector of this system is

x =
(

xs1,r1 xs2,r1 xs1,r2 xs2,r2

)T
(2.1)

where xsi,rj
is the level of resource type rj at sector si.

Similarly, for any number of sectors, ns, and any of resources, nr, the total number

of states is nx = nsnr, and the state vector is

x =
(

xs1,r1 xs2,r1 . . . xsns ,r1 . . . xs1,rnr
xs2,rnr

. . . xsns ,rnr

)T ∈ �nx
+ (2.2)

or

x =
(

xT
r1

xT
r2

. . . xT
rnr

)T ∈ �nx
+ (2.3)

where

xrj
=
(

xs1,rj
xs2,rj

. . . xsns ,rj

)T ∈ �ns
+ (2.4)

is the state vector of resource type rj.
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2.2.2 State evolution

The levels of each resource type are transferred in a discrete-time manner. They can

either remain in the same sector or move to a neighboring sector, while movements

within a sector are not taken into account. Therefore, the control action includes the

transitions of resource levels from each sector to neighboring sectors.

Define usi←sk,rj
as the level of resource type rj that is transferred from sector sk

to sector si, where sk and si are neighboring sectors. Let also x+
si,rj

be the level of

resource type rj at sector si at the next stage. Then the system evolves according to

the following state-space equation:

x+
si,rj

= xsi,rj
+

∑
k∈SN (si,rj)

usi←sk,rj
− ∑

k∈SN (si,rj)

usk←si,rj
, si ∈ S, rj ∈ R (2.5)

where SN (si, rj) is the set of neighboring sectors of sector si that can be reached by

resource type rj in one stage, S is the set of sectors in the arena, and R is the set of

resource types in the arena.

Define the control vector u as

u =
(

uT
r1

uT
r2

. . . uT
rnr

)T ∈ �nu
+ (2.6)

where the total number of control inputs is nu = nrns(ns − 1), and urj
is the control

vector composed of the transitions of resource type rj in the arena of sectors and

defined by

urj
=
(

uT
s1,rj

uT
s2,rj

. . . uT
sns ,rj

)T ∈ �ns(ns−1)
+ , rj ∈ R (2.7)

where usi,rj
is the control vector that contains only the levels of resource type rj that

enters sector si, i.e.,

usi,rj
=
(

usi←s1,rj
usi←s2,rj

. . . usi←si−1,rj
usi←si+1,rj

. . . usi←sns ,rj

)T

∈ �(ns−1)
+ , si ∈ S, rj ∈ R

(2.8)
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Also define

Uin : S ×R× SN (S,R) → {1, 2, . . . , nu} (2.9)

as the function that maps a triple of the form (si, rj, sk), where si ∈ S, rj ∈ R and

sk ∈ SN (si, rj), to the row number of u that corresponds to usi←sk,rj
, i.e.,

u (Uin (si, rj, sk) , 1) = usi←sk,rj
(2.10)

Similarly, define

Uout : SN (S,R) ×R× S → {1, 2, . . . , nu} (2.11)

as the function that maps a triple of the form (sk, rj, si), where si ∈ S, rj ∈ R and

sk ∈ SN (si, rj), to the row number of u that corresponds to usk←si,rj
, i.e.,

u (Uout (sk, rj, si) , 1) = usk←si,rj
(2.12)

We can use Uin and Uout to rewrite the state-space equations of (2.5) in the fol-

lowing form:

x+
si,rj

= xsi,rj
+ bT

si,rj ,in · u − bT
si,rj ,out · u, si ∈ S, rj ∈ R (2.13)

where ∀θ ∈ {1, 2, . . . , nu} the following hold:

bsi,rj ,in (θ, 1) =




1, if θ = Uin (si, rj, sk) , sk ∈ SN (si, rj)

0, otherwise

bsi,rj ,out (θ, 1) =




1, if θ = Uout (sk, rj, si) , sk ∈ SN (si, rj)

0, otherwise

In other words, the inner product bT
si,rj ,in ·u is the level of resource type rj that enters

sector si, and the inner product bT
si,rj ,out · u is the level of resource type rj that exits

from sector si.
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Let us also define the following matrices:

Bin =
[

bs1,r1,in . . . bsns ,r1,in . . . bs1,rnr ,in . . . bsns ,rnr ,in

]T

Bout =
[

bs1,r1,out . . . bsns ,r1,out . . . bs1,rnr ,out . . . bsns ,rnr ,out

]T (2.14)

whose product with u is the vector of resource levels that enters or exits from each

sector, respectively.

Then equation (2.13) can be written as

x+ = x + (Bin − Bout) · u (2.15)

or equivalently

x+ = x + B · u (2.16)

where x+ is the state vector at the next stage and

B = Bin − Bout (2.17)

is the matrix whose product with u is the change in the state vector at the next stage.

This matrix can also be given by the following equation:

B =
[

bs1,r1 bs2,r1 . . . bsns ,r1 . . . bs1,rnr
bs2,rnr

. . . bsns ,rnr

]T
(2.18)

where

bsi,rj
= bsi,rj ,in − bsi,rj ,out, si ∈ S, rj ∈ R (2.19)

is the vector whose inner product with u is the change in the level of resource type

rj at sector si.

For example, in case of two sectors and two resource types we have:

S = {s1, s2}

R = {r1, r2}

SN (s1, rj) = {s2} , ∀rj ∈ R

SN (s2, rj) = {s1} , ∀rj ∈ R
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and the state-space equations are




xs1,r1

xs2,r1

xs1,r2

xs2,r2




+

=




xs1,r1

xs2,r1

xs1,r2

xs2,r2


+




1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1


 ·



us1←s2,r1

us2←s1,r1

us1←s2,r2

us2←s1,r2


 (2.20)

2.2.3 State and control constraints

The state-space equation of (2.16) must meet several constraints in order to represent

the evolution of the resources. In particular, the level xsi,rj
of resource type rj at

sector si can be neither less than zero nor greater than a positive upper bound,

xsi,rj ,max (positivity constraints), i.e.,

0 ≤ xsi,rj
≤ xsi,rj ,max, ∀si ∈ S, ∀rj ∈ R (2.21)

These constraints can also be written in a vector form as

0 ≤ x ≤ xmax (2.22)

where xmax ∈ �nx
+ is the state vector of the maximum resource levels. Let us define

P as the set of state vectors that satisfy the positivity constraints, i.e.,

P = {z ∈ �nx
+ | 0 ≤ z ≤ xmax} (2.23)

Then x must satisfy the following constraint:

x ∈ P (2.24)

Similarly, the control input usk←si,rj
must always be non-negative, i.e.,

0 ≤ usk←si,rj
, ∀sk ∈ SN (si, rj), ∀si ∈ S, ∀rj ∈ R (2.25)

or equivalently

0 ≤ u (2.26)
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Moreover, the resources flow within the arena of sectors must be continuous, in the

sense that the level of resource type rj that exits from sector sk cannot be greater

than the level of resource type rj that lies in sector sk (continuity constraints), i.e.,

0 ≤ ∑
sk∈SN (si,rj)

usk←si,rj
≤ xsi,rj

, ∀si ∈ S, ∀rj ∈ R (2.27)

which can be written as

0 ≤ bT
si,rj ,out · u ≤ xsi,rj

, ∀si ∈ S, ∀rj ∈ R (2.28)

or equivalently

0 ≤ Bout · u ≤ x (2.29)

In addition, in order for constraint (2.22) to be satisfied, the control vector, u,

must also satisfy the following inequality:

0 ≤ x+ ≤ xmax ⇔ −x ≤ B · u ≤ xmax − x (2.30)

Hence, given current state vector x, which satisfies the inequality constraint 0 ≤
x ≤ xmax, the control vector, u, must be such that the following inequalities hold

together: 


0 ≤ u

0 ≤ Bout · u ≤ x

−x ≤ B · u ≤ xmax − x

(2.31)

Let us define C(x) as the set of control vectors that satisfy these constraints given

current state vector x, i.e.,

C(x) = {z ∈ �nu
+ | Bout · z ≤ x, −x ≤ B · z ≤ xmax − x} (2.32)

Then u must satisfy the following constraint:

u ∈ C(x) (2.33)
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Constraints (2.24) and (2.33) guarantee that the system is closed. In other words,

the total quantity of a resource type in the arena of sectors cannot be increased or

decreased, while resources can be moved only to neighboring sectors.

The state-space equation of (2.16) in conjunction with constraints (2.24) and

(2.33) describe the evolution of resources flow. This system is given by

Σ1 :




x+ = x + B · u

x ∈ P, u ∈ C(x)
(2.34)

and can be represented by the block diagram in Figure 2.2.

Figure 2.2: Block diagram of resources flow.

2.3 System specifications

According to the state-space representation of (2.34), both state vector x and control

vector u are bounded by finite vectors. In particular,

0 ≤ x ≤ xmax (2.35)

and

−xmax ≤ −x ≤ B · u ≤ xmax − x ≤ xmax (2.36)
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which means that Conclusion 2.1 holds.

Conclusion 2.1 System (2.34) is bounded-input bounded-output stable.

Moreover, in case we consider the sum of resource levels in the arena of sectors as

the output of this system, i.e.,

y = 1T · x (2.37)

the resulting system is




x+ = x + B · u

y = 1T · x
(2.38)

and its transfer function is

Ĝ(z) = 1T (zI − I)−1B =
1

z − 1
1TB (2.39)

where z is the z-transform variable. According to the definition of matrix B, we have

1TB = 0. Hence,

Ĝ(z) = 0 (2.40)

which means that the output of this system is constant over time, i.e., Conclusion 2.2

holds.

Conclusion 2.2 The sum of resource levels in the arena of sectors is constant over

time.

Since the sum of resource levels is constant over time, we can define the set X (x)

of reachable state vectors given current state vector x as

X (x) = {z ∈ P | 1T · z = 1T · x, where x ∈ P} (2.41)
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Let us also assume that every sector in the arena can be reached by every resource

type, i.e.,

SN (si, rj) = SN (si) , ∀rj ∈ R (2.42)

where SN (si) is the set of neighboring sectors of sector si. Then, Conclusion 2.3

gives the conditions for a state vector to be reachable.

Conclusion 2.3 Let x[0] = x0 be an initial state vector of system (2.34) and xd be

any vector in P such that xd ∈ X (x0). If (2.42) is satisfied, then there is N ∈ N
and an admissible control sequence {u[k]}N

k=0, with u[k] ∈ C(x[k]), k ∈ {0, 1, . . . , N},
such that x[N ] = xd.

where N is the set of natural numbers.

2.4 Remarks

We conclude that resources flow in an arena of sectors can be described by the large

scale linear system of equation (2.34). The sum of resource levels is always constant.

If, in addition, any sector in the arena can be reached by any resource type, i.e.,

equation (2.42) is satisfied, then the system can be driven to any desired state within

the set of allowable states.

In the next chapter, this linear system with constraints will also be the basis of

a model for an adversarial team that allocates its resources in the same arena of

sectors. This model will be used in describing situations where friendly and enemy

resources are engaged in an arena of sectors. Moreover, because of the linearity of

this model we will show that a linear-programming-based planning can be used for

friendly resources allocation.
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CHAPTER 3

Adversarial Environment

3.1 Introduction

In this chapter, the linear system of equation (2.34), which describes the evolution

of resources in an arena of sectors, is expanded in order to include the case that

adversarial resources are also evolve in the same arena of sectors. This situation is

appropriate in battles, where several resource types of two teams are engaged trying

to cause the largest possible attrition to their enemies. In this case, attrition occurs

when two resource types of different team are very close to each other, or if they lie

in the same sector.

Each team allocates its resources in such a way that opponent’s attrition losses

are maximized. Several approaches to deriving optimal decisions for the “friendly”

resources (home team) have been already proposed. One of these is to view the

presence of the enemy resources (opponent team) as a “disturbance” and to design

optimal disturbance rejection controllers. In this case, both control and disturbance

must satisfy constraints similar to those of equation (2.33) since they cannot be greater

than the available resources and lower than zero. Methods such as �1 optimal control

[10] do take into account the possibility of such bounds.

However, since enemy resources are also state dependent, we can avoid taking

a conventional disturbance rejection approach. In particular, we will model enemy

resources to follow similar state space equations as those of friendly resources, since

they evolve following the same constraints (positivity and continuity constraints).
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We also assume that the decisions of both teams can be made within the same time-

interval and that the current state of the enemy resources is known.

According to these assumptions, we will transform the problem of maximizing the

enemy attrition losses into a large-scale optimization problem. In particular, we will

show that this problem can be approximated as a linear program, and implemented

in a receding horizon manner. This approach was introduced by Daniel-Berhe et al.

in [13] and will be the basis for a multi-vehicle path planning with adversaries in

Chapter 4.

3.2 State-space representation

Let us consider the case where resources are subject to attrition because in the arena of

sectors another team of resources (adversarial resources) is evolved. Define “friendly

team” to be the home team of resources, which will be denoted by the letter “f ”, and

define the team of adversarial resources as the “enemy team”, denoted by the letter

“e”. We will assume that the set of resource types, R, is the same for each team, i.e.,

Rf = Re = R (3.1)

which also implies that

SN f (si, rj) = SN e(si, rj) = SN (si, rj), ∀si ∈ S, ∀rj ∈ R (3.2)

In this case, attrition is defined as the level of a resource type of either team that is

being lost when it meets the same resource type of the opponent team. In particular,

suppose that at sector si the level of friendly resource type rj is xf
si,rj

, while the level

of the enemy resource type rj is xe
si,rj

. Then, for both teams the attrition function

for resource type rj at sector si will be

lsi,rj
= lsi,rj

(
xf

si,rj
, xe

si,rj

)
= min

{
xf

si,rj
, xe

si,rj

}
(3.3)
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In case there is no alignment of resources, then the attrition loss will be equal to zero.

Because of the attrition losses, the states of friendly and enemy resources are

(
xf

si,rj

)+
= xf

si,rj
+

∑
k∈SN (si,rj)

uf
si←sk,rj

− ∑
k∈SN (si,rj)

uf
sk←si,rj

− lfsi,rj
(3.4)

(
xe

si,rj

)+
= xe

si,rj
+

∑
k∈SN (si,rj)

ue
si←sk,rj

− ∑
k∈SN (si,rj)

ue
sk←si,rj

− lesi,rj
(3.5)

∀si ∈ S, ∀rj ∈ R

where

lfsi,rj
= lesi,rj

= lsi,rj

(
xf

si,rj
, xe

si,rj

)

Equations (3.4), (3.5) can be written equivalently as(
xf

xe

)+

=

(
xf

xe

)
+

(
Bf

O

)
· uf +

(
O
Be

)
· ue −

(
lf

le

)
(3.6)

xf ,xe ∈ �nx
+ , uf ,ue ∈ �nu

+ , Bf ,Be ∈ �nx×nu

where

lf =
(

lfs1,r1
lfs2,r1

. . . lfsns ,r1
. . . lfs1,rnr

lfs2,rnr
. . . lfsns ,rnr

)T ∈ �nx

le =
(

les1,r1
les2,r1

. . . lesns ,r1
. . . les1,rnr

les2,rnr
. . . lesns ,rnr

)T ∈ �nx

Because of (3.1) in the above equations we have also assumed that

nf
x = ne

x = nx and nf
u = ne

u = nu (3.7)

In order for the state-space equations of (3.6) to represent the flow of both friendly

and enemy resources, constraints (2.24) and (2.33) must also be taken into account.

In particular, the resources flow is described by

Σ2 :




(
xf

xe

)+

=

(
xf

xe

)
+

(
Bf

O

)
· uf +

(
O
Be

)
· ue −

(
lf

le

)

xf ,xe ∈ P, uf ∈ C(xf ), ue ∈ C(xe)

(3.8)
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where the sets P and C(x) are defined by (2.23), (2.32), respectively.

The evolution of friendly and enemy resources can also be represented by the block

diagram in Figure 3.1.

Figure 3.1: Block diagram of friendly and enemy resources flow with attrition.

3.3 Problem reformulation

Our goal is to maximize the attrition of the enemy, or equivalently to minimize its

resource levels. In other words, we are searching for friendly paths that will cause the

maximum possible attrition to the enemy.

Using the attrition function of (3.3), the state-space equation of (3.8) is not linear

any more, because the attrition function is a nonlinear function of the state vectors

of both teams. Nevertheless, even if the attrition function is a linear function of the

enemy state vector, i.e.,

lf = Lf · xe, le = Le · xf (3.9)

the state-space equations of (3.8) may not satisfy the positivity constraint.

In particular, since the attrition losses are subtracted from the current state, if

the current resource level at a sector is zero, then the corresponding resource level at

the next stage will be negative. Thus, by using the state-space equations of (3.8) with
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the additional constraints of (3.9), we are not able to formulate a linear optimization

program, where the objective function would be the minimization of the enemy’s

attrition losses. A linear formulation is desirable because it is easy to solve and

computationally efficient.

According to Daniel-Berhe et al in [13], this optimization can be approximated

with a linear programming based planning for the friendly resources. This approach

is based on two model simplifications that will allow the use of linear programming.

To compensate for this approximation the optimization scheme will be implemented

according to a receding horizon manner.

3.3.1 Model simplifications

The state-space equations of both teams (friendly and enemy), given by (3.8) in

Section 3.1, cannot be used for deriving an optimal policy for friendly planning. The

obstacles are

• The presence of the attrition function.

• The unknown control vector of the enemy resources.

For this reason, we remove the attrition function from the state-space equations,

i.e.,




(
xf

xe

)+

=

(
xf

xe

)
+

(
Bf

O

)
· uf +

(
O
Be

)
· ue

xf ,xe ∈ P, uf ∈ C(xf ), ue ∈ C(xe)

(3.10)

In other words, we assume that both teams evolve as if no attrition will occur. How-

ever, we can expect that this model will be significantly different from the actual

evolution. We overcome this problem by applying a receding horizon philosophy that

will be described later in this chapter.
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Moreover, since the control vector of enemy resources is not known to the friendly

resources, we assume that enemy resources implements a known feedback policy Ge ∈
�nu×nx , i.e.,

(xe)+ = xe + Be · (Gexe) = (I + BeGe) · xe (3.11)

where I ∈ �nx×nx is the identity matrix.

In this case, the state-space representation for both friendly and enemy resources

takes on the form

Σ′
2 :




(
xf

xe

)+

=

(
I O
O I + BeGe

)
·
(

xf

xe

)
+

(
Bf

O

)
· uf

xf ,xe ∈ P, uf ∈ C(xf ), Gexe ∈ C(xe)

(3.12)

This system can be described by the block diagram in Figure 3.2.

Figure 3.2: Block diagram of the simplified model for friendly and enemy resources

flow.

By using this simplified model, friendly resources are able to decide about their

future states without considering the case of possible attrition losses. However, that

decision is based on a prediction of the enemy’s future states, that are included in

the feedback matrix Ge.
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3.3.2 Creation of the enemy’s feedback matrix

The feedback matrix, Ge, contains the assumed information about the future states

of enemy resources. It is generally unknown to friendly resources but introduced

for the sake of optimization. More specifically, this feedback matrix can be used for

modelling

• certain paths of enemy resources

• diffusion of enemy resources

• probability maps of enemy resources

Recall that Uout : SN (S,R) ×R× S → {1, 2, . . . , nu} is the function that maps

a triple of the form (sk, rj, si), where si ∈ S, rj ∈ R and sk ∈ SN (si, rj), to the row

number of u that corresponds to usk←si,rj
. Similarly, in case of enemy resources we

have

ue (Uout (sk, rj, si) , 1) = ue
sk←si,rj

(3.13)

Then, for every resource type rj ∈ R, we define a feedback matrix Ge
rj
∈ �nu×ns ,

such that

Ge
rj

(Uout (sk, rj, si) , si) = ge
sk←si,rj

(3.14)

where ge
sk←si,rj

is of our choice and satisfies the following properties:

(1) ge
sk←si,rj

∈ [0, 1]

(2) ue
sk←si,rj

= ge
sk←si,rj

· xe
si,rj

= ge
sk←si,rj

· xe
rj

(si, 1)

(3)
∑

sk∈SN (si,rj)

{
ge

sk←si,rj

}
≤ 1

(3.15)

These properties guarantee that the control constraints of (3.12) are satisfied. In

other words, ge
sk←si,rj

is the percentage of level xsi,rj
of resource type rj ∈ R at sector

si ∈ S, that will be transferred to sector sk ∈ SN (si, rj).
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Recall,

xe =
( (

xe
r1

)T (
xe

r2

)T
. . .

(
xe

rnr

)T
)T

∈ �nx
+ (3.16)

and

ue =
( (

ue
r1

)T (
ue

r2

)T
. . .

(
ue

rnr

)T
)T

∈ �nu
+ (3.17)

We can define the enemy’s feedback matrix, Ge, as

Ge =




Ge
r1

O . . . O
O Ge

r2
. . . O

. . . . . . . . . . . .
O O . . . Ge

rnr


 (3.18)

where

ue
rj

= Ge
rj
· xe

rj
, ∀rj ∈ R (3.19)

or, equivalently,

ue = Ge · xe (3.20)

According to the previous definition of feedback matrix Ge, if we set ge
sk←si,rj

=

1 or 0, then we define a certain next destination for resource type rj, namely it will

move from sector si to sector sk or it will remain at sector si. Moreover, if we split

the resource level to two or more destination sectors, then we create a diffusion of

resources. This means ge
sk←si,rj

< 1. Finally, ge
sk←si,rj

could be interpreted as the

probability that resource type rj will be moved from sector si to sector sk.

The probabilistic interpretation of Ge is very useful, since we desire to test the

effectiveness of friendly planning versus an unknown sequence of enemy decisions.

Moreover, since Ge models a prediction about the future states of enemy resources,

we are able to optimize the states of friendly resources for several stages ahead. In

this way, we can compute optimal paths instead of optimal next states.
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3.4 Optimization set-up

3.4.1 Objective function

The question that arises now is which objective function would be proper for friendly

optimization planning. Generally speaking, the objective of the friendly resources is

the maximization of the enemy’s attrition losses. Since attrition occurs when both

friendly and enemy resources lie in the same sector, a possible friendly objective could

be

minimize
∥∥∥(xf )+ − (xe)+

∥∥∥
�1

=
ns∑
i=1




nr∑
j=1

∣∣∣(xf
si,rj

)+ − (xe
si,rj

)+
∣∣∣

 (3.21)

In other words, compute the next state of friendly resources in order to achieve the

minimum possible difference with the next state of enemy resources. In this case, the

attrition of enemy resources will be maximized.

By using such an objective function, the state of friendly resources is optimized for

only the next stage. However, it could be the case that the predicted next positions

of enemy resources are not within the one-stage reachable set of sectors of friendly

resources. In this case, the optimal next friendly state would be equal to the current

state. In other words, friendly resources will not move towards the enemy resources.

Certainly, the previous objective function does not guarantee an optimal path

that will maximize the enemy’s attrition losses. For this reason, and since we are able

to create a stochastic feedback matrix Ge to model the enemy’s routes for more than

one stage ahead, we expand the previous objective function to Np stages ahead. The

parameter Np is the optimization horizon and coincides with the prediction horizon

for the future states of enemy resources.

Define the state vectors of both teams for the whole optimization horizon, given
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by

Xf
1→Np

=




xf [1]
xf [2]
. . .

xf [Np]


 ∈ �Npnx

+ , Xe
1→Np

=




xe [1]
xe [2]
. . .

xe [Np]


 ∈ �Npnx

+ (3.22)

where xf [t] and xe [t] are the state vectors of friendly and enemy resources, respec-

tively, at the t-th future stage.

The new objective function is

minimize ‖Xf
1→Np

− Xe
1→Np

‖�1 (3.23)

which equivalently can be written as

minimize
Np∑
t=1

∥∥∥xf [t] − xe [t]
∥∥∥

�1
=

Np∑
t=1




ns∑
i=1




nr∑
j=1

∣∣∣xf
si,rj

[t] − xe
si,rj

[t]
∣∣∣



 (3.24)

3.4.2 Dynamic constraints

The state vectors of both teams evolve according to the simplified model given by

(3.12). For example, for any initial friendly state xf [0], we have

xf [1] = xf [0] + Bf · uf [0]

xf [2] = xf [1] + Bf · uf [1] = xf [0] +
[

Bf Bf
]
·
(

uf [0]
uf [1]

)

and generally the state after Np stages is

xf [Np] = xf [Np − 1] + Bf · uf [Np − 1] =

= xf [0] +
[

Bf Bf . . . Bf
]
·




uf [0]
uf [1]
. . .

uf [Np − 1]




The state-space equations of friendly resources and for optimization horizon Np can

be written equivalently as

Xf
1→Np

= Tf
xx0

· xf [0] + Tf
xu · Uf

0→(Np−1) (3.25)
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where

Tf
xx0

=




I
I
· · ·
I


 ∈ �Npnx×nx , Tf

xu =




Bf O . . . O
Bf Bf . . . O
. . . . . . . . . . . .
Bf Bf . . . Bf


 ∈ �Npnx×Npnu

and

Uf
0→(Np−1) =




uf [0]
uf [1]
. . .

uf [Np − 1]


 ∈ �Npnu

+

is the control vector of friendly resources for optimization horizon Np.

Similarly, if the current state of enemy resources is xe[0], then the states for the

next two stages are

xe[1] = (I + BeGe) · xe[0]

xe[2] = (I + BeGe) · xe[1] = (I + BeGe)2 · xe[0]

and generally the state after Np stages is

xe[Np] = (I + BeGe)Np · xe[0]

The state-space equations of the enemy resources for the whole optimization horizon

Np can be written equivalently as

Xe
1→Np

= Te
xx0,G · xe[0] (3.26)

where

Te
xx0,G =




(I + BeGe)

(I + BeGe)2

· · ·
(I + BeGe)Np


 ∈ �Npnx×nx

3.4.3 State constraints

According to the simplified model of (3.12), the state vectors of both teams must

belong to P. In other words, the resource level at any sector must always be non-

negative, while it is bounded from above by a positive resource level. In particular,
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as far as friendly resources are concerned, the following inequality must be satisfied:

0 ≤ Xf
1→Np

≤ Xf
max (3.27)

where

Xf
max = Tf

xx,id · xf
max

Tf
xx,id =

[
I I . . . I

]T ∈ �Npnx×nx

Similarly, for the enemy resources

0 ≤ Xe
1→Np

≤ Xe
max (3.28)

where

Xe
max = Te

xx,id · xe
max

Te
xx,id =

[
I I . . . I

]T ∈ �Npnx×nx

3.4.4 Control constraints

According to model (3.12), the allowable control input of friendly resources must

belong to the set C(xf ). In particular, the resource level that exits from a sector must

be non-negative, i.e.,

Uf
0→(Np−1) ≥ 0 (3.29)

while the resources flow must be continuous, in the sense that the resource level

that exits from a sector must be less than the resource level at that sector. These

constraints can be represented by the following inequalities:


Bf
out · uf [0] ≤ xf [0]

Bf
out · uf [1] ≤ xf [0]

. . . . . . . . .

Bf
out · uf [Np − 1] ≤ xf [Np − 1]

(3.30)

which equivalently can be written as

Tf
c · Uf

0→(Np−1) ≤ Xf
0→(Np−1) (3.31)
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where

Tf
c =




Bf
out O . . . O

O Bf
out . . . O

. . . . . . . . . . . .

O O . . . Bf
out


 ∈ �Npnx×Npnu , X0→(Np−1) =




xf [0]
xf [1]
. . .

xf [Np − 1]


 ∈ �Npnx

+

Similarly to (3.25), we have

Xf
0→(Np−1) = Txx0,c · xf [0] + Tf

xu,c · Uf
0→(Np−1) (3.32)

where

Tf
xx0,c =




I
I

. . .
I


 ∈ �Npnx×nx , T f

xu,c =




O O . . . O O
Bf O . . . O O
Bf Bf . . . O O
. . . . . . . . . . . . . . .
Bf Bf . . . O O
Bf Bf . . . Bf O



∈ �Npnx×Npnu

Thus, the continuity constraints of (3.31) can be written as

Tc · Uf
0→(Np−1) ≤ Txx0,c · xf [0] + Tf

xu,c · Uf
0→(Np−1) (3.33)

or equivalently

(
Tc − Tf

xu,c

)
· Uf

0→(Np−1) ≤ Txx0,c · xf [0] (3.34)

Moreover, according to the definition of C(xf ), the following control constraint

must be satisfied:

−xf ≤ Bf · uf ≤ xmax − xf (3.35)

or equivalently

0 ≤ (x+)f ≤ xmax (3.36)

However, these constraints can be ignored, since the state constraints of Section 3.4.3

include the state vectors for the whole optimization horizon, (3.27). Hence, the control

constraints are given by (3.29) and (3.34).
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3.4.5 Convex optimization problem

The objective function of (3.23) accompanied with the dynamic constraints of (3.25),

the state constraints of (3.27) and the control constraints of (3.29), (3.34), form the

following optimization problem for friendly planning:

minimize ‖Xf − Xe‖�1

subject to Xf = Tf
xx0

· xf [0] + Tf
xu · Uf

0 ≤ Xf ≤ Xf
max

0 ≤ Uf

(
Tc − Tf

xu,c

)
· Uf ≤ Txx0,c · xf [0]

(3.37)

where, for the sake of simplicity we have set

Xf
1→Np

= Xf , Xe
1→Np

= Xe, Uf
0→(Np−1) = Uf (3.38)

The variables of the above optimization problem are the state vector of friendly

resources for the whole optimization horizon, Xf , and the corresponding control vec-

tor, Uf . The state vector of enemy resources for the whole optimization horizon,

Xe, is not known. But as it has already been mentioned in Section 3.3.1, we can

assume that enemy resources evolve according to an uncertain or stochastic feedback

law given by (3.26).

This optimization problem can be written in a matrix form as

minimize ‖Xf − Xe‖�1

subject to

[
I O
O Tf

c − Tf
xu,c

]
·
(

Xf

Uf

)
≤
[

Tf
xx,id O
O Tf

xx0,c

]
·
(

xf
max

xf [0]

)

[
I −Tf

xu

]
·
(

Xf

Uf

)
=
[

O Tf
xx0

]
·
(

xf
max

xf [0]

)

variables Xf ∈ �Npnx

+ , Uf ∈ �Npnu

+

(3.39)
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The above optimization problem is a convex optimization problem, since the ob-

jective function is convex (�1 norm) and the constraints are linear. This problem can

be converted to an equivalent linear optimization problem.

3.4.6 Equivalent linear optimization problem

The objective function of the convex optimization problem given by equation (3.39)

can be written equivalently as

‖Xf − Xe‖�1 =
Np∑
t=1




ns∑
i=1




nr∑
j=1

∣∣∣xf
si,rj

[t] − xe
si,rj

[t]
∣∣∣



 (3.40)

This cost is always finite, since the state vectors of both friendly and enemy

resources are non-negative and bounded from above. Thus, this cost is bounded

from above by a positive number. We observe that
∣∣∣xf

si,rj
[t] − xe

si,rj
[t]
∣∣∣ is the smallest

number ysi,rj
[t] ∈ �+ that satisfies

(
xf

si,rj
[t] − xe

si,rj
[t]
)
≤ ysi,rj

[t] and −
(
xf

si,rj
[t] − xe

si,rj
[t]
)
≤ ysi,rj

[t] (3.41)

∀t ∈ {1, 2, . . . , Np}, ∀i ∈ {1, 2, . . . , ns}, ∀j ∈ {1, 2, . . . , nr}

Instead of minimizing the sum of piecewise linear convex functions of (3.40), we

can minimize the sum of their upper bounds, which is a linear function. Since this

new objective function is linear (convex), the convexity of the problem is preserved,

and the new optimization problem is equivalent with the initial one.

The new objective function is

minimize 1T · Y (3.42)

where

1 =




1
1
. . .
1


 ∈ �Npnx , Y =




y[1]
y[2]
. . .

y[Np]


 ∈ �Npnx

+
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and

y[t] =
(

ys1,r1 ys1,r2 . . . ys1,rnr
. . . ysns ,r1 ysns ,r2 . . . ysns ,rnr

)T
[t] ∈ �nx

+

∀t ∈ {1, 2, . . . , Np}

while the new linear constraints of equation (3.41) can be written as

(
Xf − Xe

)
≤ Y and −

(
Xf − Xe

)
≤ Y (3.43)

Thus, the convex optimization problem of (3.39) is equivalent to the following

linear optimization problem:

minimize 1T · Y

subject to

[
I O
O Tf

c − Tf
xu,c

]
·
(

Xf

Uf

)
≤
[

Tf
xx,id O
O Tf

xx0,c

]
·
(

xf
max

xf [0]

)

(
Xf − Xe

)
≤ Y, −

(
Xf − Xe

)
≤ Y

[
I −Tf

xu

]
·
(

Xf

Uf

)
=
[

O Tf
xx0

]
·
(

xf
max

xf [0]

)

variables Xf ∈ �Npnx

+ , Uf ∈ �Npnu

+ , Y ∈ �Npnx

+

(3.44)

which can be written equivalently as

min
[

O O 1T
]
·

 Xf

Uf

Y




s.t.




I O O
O Tf

c − Tf
xu,c O

I O −I
−I O −I


 ·

 Xf

Uf

Y


 ≤




Tf
xx,id O O
O Tf

xx0,c O
O O I
O O −I


 ·

 xf

max

xf [0]
Xe




[
I −Tf

xu O
]
·

 Xf

Uf

Y


 =

[
O Tf

xx0
O
]
·

 xf

max

xf [0]
Xe




variables Xf ∈ �Npnx

+ , Uf ∈ �Npnu

+ , Y ∈ �Npnx

+

(3.45)
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We state again that the state vector of the enemy resources for the whole opti-

mization horizon, Xe, is not known, and that enemy resources evolve according to an

assumed uncertain or stochastic feedback law, represented by (3.26). According to

this equation, the linear constraints of (3.43) are written as

(
Xf − Te

xx0,G · xe[0]
)

≤ Y

−
(
Xf − Te

xx0,G · xe[0]
)

≤ Y

(3.46)

Finally, the linear optimization problem of (3.45) is equivalent to

minimize cT · z

subject to D · z − E · d ≤ 0

F · z − H · d = 0

variables z ∈ �Np(2nx+nu)
+

(3.47)

where

c =


 O

O
1T


 , z =


 Xf

Uf

Y


 , d =


 xf

max

xf [0]
xe[0]




D =




I O O
O Tf

c − Tf
xu,c O

I O −I
−I O −I


 , E =




Tf
xx,id O O
O Tf

xx0,c O
O O Te

xx0,G

O O −Te
xx0,G




F =
[

I −Tf
xu O

]
, H =

[
O Tf

xx0
O
]

which is a linear optimization problem in standard form.

In other words, by removing attrition losses from the original model of friendly

and enemy resources flow, and by introducing a stochastic feedback matrix for the

enemy resources, we finally obtain a linear programming optimization problem.
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3.4.7 Alternative objective function

The previously described linear programming optimization problem of (3.47) is equiv-

alent to the convex programming optimization problem of (3.39). However, in order to

avoid converting the initial convex objective function to an equivalent linear one and

introducing new (slack) variables, it is preferable to select a linear objective function

from the start. In particular, one linear objective function could be

minimize − (Xe)T · Xf (3.48)

which is an affine (linear) function of the state vector of friendly resources. In other

words, the minimum value of this function is attained when the maximum possible

interceptions of enemy resources by friendly resources occur in the arena of sectors

and within the next Np stages.

This objective function, accompanied with the dynamic constraints of (3.25), the

state constraints of (3.27) and the control constraints of (3.29) and (3.34), form the

following linear programming optimization problem for friendly planning:

minimize − (Xe)T · Xf

subject to Xf = Tf
xx0

· xf [0] + Tf
xu · Uf

0 ≤ Xf ≤ Xf
max

0 ≤ Uf

(
Tc − Tf

xu,c

)
· Uf ≤ Txx0,c · xf [0]

(3.49)

Since the state vectors of both teams, Xf and Xe, are always positive, the mini-

mum of their inner product is attained when the size of their difference is minimized,

i.e., when
∥∥∥Xf − Xe

∥∥∥
�1

attains its minimum. In other words, the linear programming

optimization program of (3.49) is equivalent to (i.e., has the same optimal solution

as) the convex optimization problem of (3.39).
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Equation (3.49) is written equivalently as

minimize − (Xe)T · Xf

subject to

[
I O
O Tf

c − Tf
xu,c

]
·
(

Xf

Uf

)
≤
[

Tf
xx,id O
O Tf

xx0,c

]
·
(

xf
max

xf [0]

)

[
I −Tf

xu

]
·
(

Xf

Uf

)
=
[

O Tf
xx0

]
·
(

xf
max

xf [0]

)

variables Xf ∈ �Npnx

+ , Uf ∈ �Npnu

+

(3.50)

According to the model simplifications of Section 3.3.1, we assume that the enemy

resources follow an uncertain or stochastic feedback matrix, Ge. In this case, state

vector Xe is given by

Xe
1→Np

= Te
xx0,G · xe[0] (3.51)

where Te
xx0,G was defined by (3.26).

Hence, the linear programming optimization problem of (3.49) is equivalent to

minimize −
[

(Txx0,G · xe[0])T 0T
]
·
(

Xf

Uf

)

subject to

[
I O
O Tf

c − Tf
xu,c

]
·
(

Xf

Uf

)
≤
[

Tf
xx,id O
O Tf

xx0,c

]
·
(

xf
max

xf [0]

)

[
I −Tf

xu

]
·
(

Xf

Uf

)
=
[

O Tf
xx0

]
·
(

xf
max

xf [0]

)

variables Xf ∈ �Npnx

+ , Uf ∈ �Npnu

+

(3.52)

If we compare the linear programming optimization problem of (3.47) with the

previous one in (3.52), it is easily seen that the latter has Npnx fewer variables, and

2Npnx fewer inequality constraints than the former. Therefore, the latter optimization

problem is computationally more efficient, since the computational complexity of a

linear problem grows (polynomially) in the number of variables and constraints.
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3.4.8 Feasibility of the optimization problem

The question that arises now is whether the linear programming optimization problem

of either (3.47) or (3.52) is feasible or not, i.e., whether there is a feasible solution.

First of all, the feasible set of these optimization problems is not empty since there is

at least one state vector that satisfies the positivity constraints, e.g. the initial state

vector. Thus, there is at least one feasible solution.

The existence of feasible solutions does not necessarily guarantee the existence

of an optimal (or basic) feasible solution, since the optimal cost could be infinite.

However, the polyhedron of the constraints of (3.47) or (3.52) is bounded, since

the state vector is bounded from above and below. Hence, the linear programming

optimization problem has at least one optimal solution.

3.5 Receding horizon philosophy

Such an optimal feasible solution represents an optimal path for friendly resources (for

Np stages) so that the maximum possible enemy resources levels to be intercepted.

However, both optimizations (3.47) and (3.52) do not contain the possible attrition

losses of both teams, and the future positions of enemy resources are computed by

using an assumed feedback control law. Thus, the use of a receding horizon philosophy

is necessary.

Recall that the previously described linear optimization problems were the result of

two model simplifications given in Section 3.3.1. These two model simplifications were

the removal of attrition function from the state-space equations and the introduction

of an assumed uncertain or stochastic state-feedback matrix for the enemy resources.

In other words, the model used for prediction and optimization is not the same

as the “plant” to be controlled. In particular, the plant is described by the following
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state-space equation

Σ2 :




(
xf

xe

)+

=

(
xf

xe

)
+

(
Bf

O

)
· uf +

(
O
Be

)
· ue −

(
lf

le

)

xf ,xe ∈ P, uf ∈ C(xf ), ue ∈ C(xe)

(3.53)

while the model used for prediction and optimization was

Σ′
2 :




(
xf

xe

)+

=

(
I O
O I + BeGe

)
·
(

xf

xe

)
+

(
Bf

O

)
· uf

xf ,xe ∈ P, uf ∈ C(xf ), Gexe ∈ C(xe)

(3.54)

Because of the differences between these two models, we should expect significant

discrepancies between the response of the plant and the response of the model used

for prediction and optimization. For this reason, the result of the linear optimization

problem of (3.47) or (3.52) is implemented according to a receding horizon philosophy

described by Bemporad and Morari in [2].

According to this strategy, at time t only the first optimal input is applied to the

plant. The remaining optimal inputs are not implemented. At time t+1 we measure

the current states of both teams. These measurements include actual trajectories and

attrition losses that occurred after the implementation of the first optimal control

input. Using these measurements, a new optimal control problem is solved at time

t + 1.

In other words, the following algorithm is implemented. At time t:

1. Measure the new state vectors of both teams, xf [t] and xe[t].

2. Solve the linear programming (LP) optimization problem of (3.47) or (3.52).

Let

(U∗)f =
[

(u∗)f [t + 0] (u∗)f [t + 1] · · · (u∗)f [t + Np]
]

be the optimal control for the whole optimization horizon, Np.
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3. Apply only the first optimal control, i.e., uf [t] = (u∗)f [t + 0].

4. Advance t ← t + 1 and repeat.

With ue[t] as the unknown control of enemy resources at time t, which is the distur-

bance of system Σ2, the receding horizon strategy of friendly resources is described by

the block diagram in Figure 3.3.

Figure 3.3: Basic structure of Receding Horizon Philosophy.

In a general case, the type and the size of the disturbances are generally unknown.

However, in case of system Σ2, the disturbances are the enemy resources, which

are always state dependent and subject to positivity constraints similar to those of

friendly resources. For this reason, the receding horizon strategy is always “stabilizing”

in the sense that the state of friendly resources cannot be driven out of the pre-

specified constraints. Hence, stability of the system in Figure 3.3 is always satisfied.

However, the result of this control strategy is not necessarily satisfactory. In other

words, it is not guaranteed that friendly resources will cause the maximum possible

attrition to enemy resources. That is because the linear programming optimization

problem depends on the assumed feedback matrix Ge, which does not necessarily

predict accurately the future states of enemy resources. Thus, the computation of

this feedback matrix is of vital importance in terms of the effectiveness of friendly

planning.
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3.6 Remarks

In this chapter, we examined the case where two different teams (friendly or enemy)

of resources (of same types) evolve in the same arena of sectors. Assuming that these

resources are subject to attrition losses when resources of different teams lie in the

same sectors, we desire friendly optimal tactics in order for enemy’s attrition to be

maximized.

Although enemy resources can be viewed as a disturbance to the system of friendly

resources, they are state dependent and subject to the same constraints as the friendly

ones. Based on such constraints we derived a linear-programming-based planning for

the friendly resources, accompanied with a receding horizon implementation, that

optimizes the friendly paths.

The question that arises now is whether this planning for resource allocation

can be used in deriving satisfactory paths for multi-vehicle systems. In the following

chapter, we explore the effectiveness of the previously described optimization planning

to multi-vehicle tasks.
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CHAPTER 4

Multi-Vehicle Path Planning

4.1 Introduction

In this chapter we explore the utility of the linear-programming-based planning for

resource allocation, described in the previous chapter, in deriving optimal paths

for multi-vehicle control systems with adversaries. In particular, we consider the

RoboFlag competition which involves two teams of robots with opposing interests,

the defenders and the attackers. We derive control algorithms for both defense and at-

tack that are based on the linear-programming-based planning for resource allocation.

In this case, both defenders and attackers are modelled as different resource types in

an arena of sectors. Moreover, since adversaries are modelled as state-dependent, var-

ious stochastic feedback laws based on their current position and/or velocity could

describe their possible future attitude, which is included in the optimization.

4.2 The RoboFlag competition

The RoboFlag competition, described by D’Andrea and Murray in [12], involves two

teams of robots. The goal of each team is to infiltrate the protected zone of the other

team, get their flag, and bring it to their home base. However, in parallel, each team

has to thwart its opponents from capturing its own flag. This game is quite similar

to the well-known games “capture the flag” and “paint-ball”. In addition, each team

has to worry about some other parameters. For example, there are some parts of
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the field that are off-limits, moving obstacles must be avoided, and each robot has a

limited amount of fuel.

This problem seems quite complicated, and for this reason several simplified ver-

sions of this competition can be considered. One of them is the “RoboFlag Drill”

introduced by Earl and D’Andrea in [16]. This simplified version involves again two

teams of robots, the attackers and the defenders, on a playing field with a region at

its center called the defense zone, as in Figure 4.1. In reference [16] the attackers are

drones directed toward the center of the defense zone along a straight-line path at

constant velocity which is known to the defenders. The objective of the defenders is

to thwart the attackers from entering the defense zone by intercepting each attacker

before it enters the zone. Once an attacker enters the defense zone or is intercepted

by a defender it remains stationary for the remainder of the game. The objective

of the “RoboFlag Drill” is to minimize the number of the attackers that enter the

defense zone over the duration of the drill.

Figure 4.1: A simplified version of the RoboFlag competition, Roboflag Drill.
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This simplified version of the Roboflag competition leads to several other generi-

lations. In particular, the attackers could follow random paths, which are unknown

to the defenders, towards the defense zone. An even more complicated version than

the previous one could involve efficient attacking tactics, where the attackers decide

their next positions based on their relative distance from the defense zone and the

defenders. In both these two versions of the game, the objective of the defenders is

again the interception of the maximum possible number of attackers.

In the following section, we explore the utility of a linear-programming-based

planning for deriving tactics for both the defenders and the attackers. These methods

are similar to those derived in Chapter 3 for friendly resource allocation planning.

4.3 Linear-programming-based defense planning

We pursue an approach that allows the use of linear programming in conjunction

with a receding horizon philosophy in order to find optimal paths for the defenders.

To this end, both defenders and attackers will be considered as two different teams

of resources. In particular, defenders will be considered as friendly resources, while

attackers will be considered as enemy resources. Each unit of the defenders or the

attackers could be viewed as a different resource type of the team. However, since

each attacker is subject to “attrition losses” (i.e., it becomes inactive after being

intercepted by a defender), we assume that each resource type (unit) of the attackers

becomes inactive when it is intercepted by any resource type (unit) of the defenders.

The playing ground is divided into sectors, and the state for this system (resources

flow) is defined as the level of a resource type at each sector. Moreover, in order for

a resource level to correspond to a unit of the defenders or the attackers, we assign

resource level “1” to the sector in which a unit lies, and “0” to the sector at which there

is no unit. In other words, the resource level can take only two integer values, “0” and
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“1”. Moreover, defenders are not allowed to enter their defense zone, which means

that the sectors of the defense zone cannot be reached by the defenders’ resources.

Summarizing, we assume that:

• Defenders and attackers are considered as friendly and enemy resources, respec-

tively.

• Each defender and each attacker could be viewed as a different resource type.

• Any resource type (unit) of the attackers can be intercepted by any resource

type (unit) of the defenders.

• The playing ground is divided into sectors, and the level of any resource type

at any sector takes on only two integer values, “0” or “1”.

• The defenders’ resources cannot reach the sectors of their defense zone.

Under these assumptions, Figure 4.1 takes the form of Figure 4.2, where the

position of each unit of both teams corresponds to a sector. In addition, although

only the attackers are subject to attrition losses, this problem can be transformed to

a linear-programming-based planning in a similar manner to the described in Chapter

3. According to that procedure, we solve a linear programming optimization problem

for friendly planning that maximizes the number of interceptions between friendly

and enemy resources within Np time stages. Since enemy resources are subject to

attrition losses, we implement only the first optimal control. At the next stage, we

measure the new states of both teams, and we solve again the linear optimization

problem.

4.3.1 Binary constraints

Our final goal is the derivation of a linear programming optimization problem for

defense which will be similar to those of (3.47) and (3.52). However, according to
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Figure 4.2: The playing area is separated into sectors.

the previous assumptions, both friendly and enemy resource levels take on only two

integer values, “0” and “1” (binary constraints). In other words, a new constraint

must be added to the linear optimization problem. Let the superscripts “d” and “a”

denote defenders and attackers, respectively. For the defenders, this binary constraint

is equivalently written as

xd
si,rj

= 0 or xd
si,rj

= 1, ∀si ∈ S, ∀rj ∈ Rd (4.1)

where Rd is the set of defenders’ resource types. This constraint can be written

equivalently as

xd ≤ xmax = 1, xd ∈ Znd
x

+ (4.2)

where Z+ is the set of non-negative integer numbers, nd
x = nsn

d
r is the number of

defenders’ states, and nd
r is the number of defenders’ resource types, i.e., the number

of defenders’ units.

Similarly, if xa is the attackers’ state vector, then

xa ≤ xmax = 1, xa ∈ Zna
x

+ (4.3)
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where na
x = nsn

a
r is the number of attackers’ states, and na

r is the number of attackers’

resource types, i.e., the number of attackers’ units.

4.3.2 Defense-zone constraints

The defenders’ resources are not allowed to enter the defense zone (defense-zone

constraints). We would prefer to express this constraint as a linear function of the

defenders’ state vector. To this end, we denote Sdz as the set of sectors that belong

to the defense zone and we define the vector xdz
1 such that,

xdz
1 (i, 1) =




1, if si ∈ Sdz

0, if si /∈ Sdz
∈ Zns

+ , i ∈ {1, 2, 3, . . . , ns} (4.4)

In other words, xdz
1 represents the state vector of one resource type that lies in the

defense zone. The subscript “1” corresponds to the number of resource types.

We also define the vector

xdz =
[ (

xdz
1

)T (
xdz

1

)T
. . .

(
xdz

1

)T
]T

∈ Znd
x

+ (4.5)

which represents the state vector of nd
r different resource types that lie in the defense

zone.

In this case, the defense-zone constraints can be written as

(
xdz
)T · xd = 0 (4.6)

There is no constraint of this type for the attackers since they are allowed to enter

the defense zone.

4.3.3 Mixed integer programming optimization problem

Since, the binary and defense-zone constraints of (4.2), (4.3) and (4.6) are linear,

we can add them to one of the linear programming optimization problems derived
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in Chapter 3, see equations (3.47) and (3.52). The resulting optimization is a linear

programming optimization problem that can be used in deriving optimal paths for

the defenders.

As explained in Section 3.4.7, the linear programming problem of (3.52) is com-

putationally more efficient than that of (3.47). For this reason, and since they are

equivalent, only the former one will be used in deriving optimal paths for the defend-

ers. However, these linear programming optimization problems were derived for the

case where the number of friendly resource types is equal to the number of enemy

resource types. Thus, assuming that the number of defenders’ resources is equal to

the number of attackers’ resources, i.e.,

nd
r = na

r (4.7)

the linear programming optimization problem of (3.52) augmented with the binary

and defense-zone constraints of (4.2), (4.3) and (4.6) formulate a mixed integer pro-

gramming optimization problem, that is

minimize −
[

(Xa)T 0T
]
·
(

Xd

Ud

)

subject to

[
I O
O Td

c − Td
xu,c

]
·
(

Xd

Ud

)
≤
[

Td
xx,id O
O Td

xx0,c

]
·
(

1
xd[0]

)


 I −Td

xu(
Xdz

)T
O


 ·
(

Xd

Ud

)
=

[
O Td

xx0

O O

]
·
(

1
xd[0]

)

variables Xd ∈ ZNpnd
x

+ , Ud ∈ �Npnd
u

+

(4.8)

where superscripts “d” and “a” correspond to “defenders” and “attackers”, respec-

tively, and Xdz is defined according to the definitions of Xd, Xa, i.e.,

Xdz = Xdz
1→Np

=




xdz [1]
xdz [2]

. . .
xdz [Np]


 =




xdz

xdz

. . .
xdz


 ∈ ZNpnd

x
+ (4.9)
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Although there are several methods that can be used for computing the optimal

solution of a mixed integer optimization problem, such as cutting plane methods or

branch and bound [4], we prefer to solve a linear programming problem instead. The

main reason for this preference is the computational complexity of an integer problem.

Moreover, given the availability of several efficient algorithms for linear program-

ming, the choice of a formulation, although important, does not critically affect our

ability to solve the problem. This is not always the case for integer programming

formulations, where, especially in large optimization problems the choice of a formu-

lation is crucial.

In order to avoid these handicaps of integer programming, we transform the mixed

integer problem of (4.8) into a linear-programming-based optimization planning. This

planning includes the following steps:

1. We introduce the linear programming relaxation of the mixed integer program-

ming problem of (4.8).

2. Given the non-integer optimal solution of the linear programming relaxation, we

compute a suboptimal solution for the mixed integer programming problem.

3. We apply this solution according to a receding horizon philosophy.
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4.3.4 Linear programming relaxation

The linear programming relaxation of the mixed-integer programming problem of (4.8)

is

minimize −
[

(Xa)T 0T
]
·
(

Xd

Ud

)

subject to

[
I O
O Td

c − Td
xu,c

]
·
(

Xd

Ud

)
≤
[

Td
xx,id O
O Td

xx0,c

]
·
(

1
xd[0]

)


 I −Td

xu(
Xdz

)T
O


 ·
(

Xd

Ud

)
=

[
O Td

xx0

O O

]
·
(

1
xd[0]

)

variables Xd ∈ �Npnd
x

+ , Ud ∈ �Npnd
u

+

(4.10)

where now the state vector Xd can take any value between 0 and 1. For this reason,

the polyhedron defined by the linear constraints of this relaxation problem includes

the corresponding polyhedron of the mixed integer programming problem. More

specifically, if PLP , PMI are these two polyhedrons, respectively, then both of them

contain exactly the same set of integer solutions. Thus, if the problem were two

dimensional, then these two polyhedrons would have the form of Figure 4.3.

Figure 4.3: The two polyhedra PLP and PMI contain exactly the same set of integer

solutions.

Therefore, if an optimal solution to the relaxation is feasible for the mixed inte-
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ger programming problem, it is also an optimal solution to its linear programming

relaxation.

4.3.5 Computation of a suboptimal solution

In general, the solution of the linear programming relaxation is a non-integer vector,

which means that this solution does not belong to the feasible set of the mixed integer

programming problem. However, as explained in Section 3.5, the optimal solution of

the latter optimization problem is applied according to a receding horizon philosophy.

Since this strategy implements only the first optimal control, we are only interested

in the first optimal solution of the mixed integer programming problem.

Given the optimal control of the linear programming relaxation for the whole

optimization horizon, Np,

(U∗)d =
[

(u∗)d [t + 0] (u∗)d [t + 1] · · · (u∗)d [t + Np]
]

we are interested only in the first optimal control, i.e., (u∗)d [t] = (u∗)d [t + 0], which

will generally be a non-integer vector between 0 and 1.

Given this first optimal solution of the linear programming relaxation, we construct

a suboptimal solution of the mixed integer programming problem. In particular, among

the resource levels that exit from or remains at a sector, we pick up the maximum of

them, to which we assign the value “1”, while the rest of them are assigned the value

“0”. In this way, we define an integer control input that belongs to the feasible set

of the mixed integer programming problem of (4.8), while, in parallel, the sum of the

resource levels remains the same as that of the previous stage.

Algorithmically, according to the definition of the function Uout : SN (S,R) ×
R×S → {1, 2, . . . , nu} (see equation (2.12) in page 18), we define the corresponding

function of the defenders’ resources as

Ud
out : SN d(S,Rd) ×Rd × S →

{
1, 2, . . . , nd

u

}
(4.11)
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where SN d(S,Rd) is the set of neighboring sectors of the defenders’ resources. This

function maps a triple of the form (sk, rj, si), where si ∈ S, rj ∈ Rd and sk ∈
SN d(si, rj), to the row number of the control vector, ud, that corresponds to the

control level ud
sk←si,rj

, i.e.,

ud
(
Ud

out (sk, rj, si) , 1
)

= ud
sk←si,rj

(4.12)

Let ũd[t] be a suboptimal solution of the mixed integer programming problem at

time t. This solution can be constructed in the following way: For each sector si ∈ S
and each resource type rj ∈ Rd,

1. Define the set

UN d(si, rj) =
{
Ud

out(sk, rj, si) | sk ∈ SN d(si, rj)
}

that includes the row numbers of the control vector ud which correspond to the

control inputs
{
ud

sk←si,rj
| sk ∈ SN d(si, rj)

}
.

2. If xd
si,rj

�= 0, find the row number, θ∗, of (u∗)d [t] that corresponds to the maxi-

mum control level among those ones that exit from sector si, i.e.,

θ∗ = arg max
θ∈UN d(si,rj)

{
(u∗)d [t](θ, 1)

}

(a) if (u∗)d [t](θ∗, 1) ≥ 1−∑θ∈UN d(si,rj)

{
(u∗)d [t](θ, 1)

}
, which means that the

maximum control level that exits from sector si is greater than the resource

level that remains at that sector, set

ũd[t](θ, 1) =




1 , if θ = θ∗

0 , if θ �= θ∗
, θ ∈ UN d(si, rj)

which implies that the resource level xd
si,rj

will move to the neighboring

sector sk ∈ SN d(si, rj) that satisfies Ud
out(sk, rj, si) = θ∗.
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(b) otherwise, set

ũd[t](θ, 1) = 0, ∀θ ∈ UN d(si, rj).

which implies that the resource level xd
si,rj

will remain at sector si.

3. If xd
si,rj

= 0, set

ũd[t](θ, 1) = 0, ∀θ ∈ UN d(si, rj).

The resulting integer control vector, ũd[t], belongs to the feasible set of the mixed

integer programming problem of (4.8), while the sum of the resource levels remains

the same as the one of the previous stage.

4.3.6 Control algorithm for defense

We computed a suboptimal solution of the mixed integer programming problem, (4.8),

by solving only its linear programming relaxation, (4.10). This solution is implemented

in a receding horizon manner. In particular, the linear-programming-based planning

for defense contains the following steps:

1. Measure the new state vectors of the defenders, xd, and the attackers, xa.

2. Solve the linear programming relaxation, (4.10), of the mixed integer program-

ming problem, (4.8). Let

(U∗)d =
[

(u∗)d [t + 0] (u∗)d [t + 1] · · · (u∗)d [t + Np]
]

be its optimal control solution for the whole optimization horizon, Np.

3. Given the first optimal control, (u∗)d [t] = (u∗)d [t + 0] of the linear program-

ming relaxation, compute a suboptimal solution, ũd[t], for the mixed integer

programming problem, according to Section 4.3.5.
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4. Apply only the suboptimal solution, ũd[t].

5. Advance t ← t + 1 and repeat.

4.3.7 Computational simplifications

The previously described linear-programming-based path planning for the defenders

can be used for intercepting a group of attackers that try to enter the defense zone.

Both the mixed integer programming optimization problem of (4.8) and its linear

programming relaxation of (4.10) were derived by assuming that each unit of the

defenders and the attackers is considered as a different resource type. Moreover, we

assumed for the sake of simplicity that the number of defenders’ resource types (units)

is equal to the number of attackers’ resource types (units), i.e., nd
r = na

r .

Even though the resulting optimization problem is linear, we would prefer a sim-

pler formulation of the same problem with fewer variables. Furthermore, we prefer

that the number of defenders’ resource types (units) could be different than the num-

ber of attackers’ resource types (units). To this end, we define a new state vector for

each team, xd
1 and xa

1, where the units of each team are considered as one resource

type. In this case, the dimension of both these two vectors does not depend on the

number of units and is equal to the number of sectors, ns. In this way, we reduce

the number of variables of the optimization problem, while we can model situations

where the number of defenders’ units is different than the number of attackers’ units.

In other words,

xd
1 ≤ 1, xa

1 ≤ 1, where xd
1,x

a
1 ∈ Zns

+ (4.13)

while the corresponding control vector of the defenders is

ud
1 ≤ 1, where ud

1 ∈ Zns
+ (4.14)
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Similarly, the state vector of the defense zone is defined as

xdz
1 ≤ 1, where xdz

1 ∈ Zns
+ (4.15)

By using these new state and control vectors, the linear programming relaxation

of the mixed integer programming problem of (4.8) can be written equivalently as

minimize −
[

(Xa
1)

T 0T
]
·
(

Xd
1

Ud
1

)

subject to

[
I O
O Td

c − Td
xu,c

]
·
(

Xd
1

Ud
1

)
≤
[

Td
xx,id O
O Td

xx0,c

]
·
(

1
xd

1[0]

)


 I −Td

xu(
Xdz

1

)T
O


 ·
(

Xd
1

Ud
1

)
=

[
O Td

xx0

O O

]
·
(

1
xd

1[0]

)

variables Xd
1 ∈ �Npnd

x
+ , Ud

1 ∈ �Npnd
u

+

(4.16)

where the vectors X1 and U1 are defined according to the definition of the vectors X

and U, respectively.

Note that this linear programming problem has fewer number of variables than

that of (4.10). In particular, the latter one has Npn
d
x = Npnsn

d
r state variables and

Npn
d
u = Npn

d
rns(ns − 1) control variables, where the number of defenders’ resource

types nd
r coincides with the number of defenders’ units. On the other hand, the

optimization problem of (4.16) has Npns state variables and Npns(ns − 1) control

variables. Thus, the number of variables was reduced by

Npns

(
nd

r − 1
)

+ Np

(
nd

r − 1
)
ns(ns − 1) = Npn

2
s

(
nd

r − 1
)

4.3.8 Alternative objective functions

According to the linear-programming-based defense planning, defenders objective

function is the maximization of the inner product of the defenders’ state vector with

the attackers’ state vector. Thus, we should expect that the defenders will move

towards the attackers, since their interception will increase their inner product.
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However, this objective function does not include any information about the dis-

tance between the defenders and their defense zone. In other words, the defenders

will move towards the attackers without taking into account their distance from the

defense zone. On the contrary, we would rather the defenders move towards the

attackers, but at the same time stay reasonably close to the defense zone. The ad-

vantages of such a policy are the following:

• The defender spends less energy, since does not follow an attacker that moves

far away from the defense zone.

• Since defenders move about the defense zone and within a small distance, the

possibility of intercepting an attacker that tries to enter the defense zone is

greater.

Thus, such a defense policy must provide a measure of how important is for the

defenders to move towards the attackers or to stay closer to the defense zone. Since

the inner product − (Xa
1)

T · Xd
1, which was used as an objective function in (4.16),

represents the cost of staying away from the attackers, we are interested in finding

a similar affine (linear) function of Xd
1, that will represent the cost of staying away

from the defense zone. In that case, a possible objective function could be a weighted

sum of these two linear functions of Xd
1.

To this end, we define a small zone about the defense zone as the “low-energy zone”

of the defenders that is denoted as “lz” and it is shown in Figure 4.4. The defenders

that remain within this zone spend less energy, because they take advantage of the

fact that eventually attackers will move closer to the defense zone. If S lz denotes the

set of sectors that belong to the low-energy zone, we define the following state vector:

xlz
1 (i, 1) =




1, if si ∈ S lz

0, if si /∈ S lz
∈ Zns

+ , i ∈ {1, 2, 3, . . . , ns} (4.17)
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In other words, xlz
1 represents the state vector of a resource type that lies in

the sectors of S lz. The subscript “1” corresponds to the number of resource types

similarly to the definitions of xd
1 and xa

1.

Figure 4.4: A “low-energy” zone is defined about the defense zone.

We also define Xlz
1 as the state vector for the whole optimization horizon, Np, i.e.,

Xlz
1 =




xlz
1 [1]

xlz
1 [2]
. . .

xlz
1 [Np]


 =




xlz
1

xlz
1

. . .
xlz

1


 ∈ ZNpns

+ (4.18)

Thus, the inner product −
(
Xlz

1

)T · Xd
1 represents the defenders’ cost for staying

out of the low-energy zone. By defining the following linear objective function of the

defenders’ state vector

minimize − wd
a · (Xa

1)
T · Xd

1 − wd
lz ·
(
Xlz

1

)T · Xd
1 (4.19)

or equivalently

minimize −
(
wd

a · Xa
1 + wd

lz · Xlz
1

)T · Xd
1 (4.20)
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the defenders are able to decide about the weight they attach to getting closer to the

low-energy zone, wd
lz, or closer to the attackers, wd

a. We can always take

wd
a + wd

lz = 1 (4.21)

Hence, an alternative linear programming problem that can be used in deriving

efficient paths for the defenders (according to the algorithm of Section 4.3.6) could

be

minimize −
[ (

wd
a · Xa

1 + wd
lz · Xlz

1

)T
0T

]
·
(

Xd
1

Ud
1

)

subject to

[
I O
O Td

c − Td
xu,c

]
·
(

Xd
1

Ud
1

)
≤
[

Td
xx,id O
O Td

xx0,c

]
·
(

1
xd

1[0]

)


 I −Td

xu(
Xdz

1

)T
O


 ·
(

Xd
1

Ud
1

)
=

[
O Td

xx0

O O

]
·
(

1
xd

1[0]

)

variables Xd
1 ∈ �Npnd

x
+ , Ud

1 ∈ �Npnd
u

+

(4.22)

4.3.9 Remarks

We showed that the problem of optimizing defense trajectories in the simplified ver-

sion of the RoboFlag competition can be solved by a linear-programming-based path

planning. This strategy was based on the linear-programming-based planning for

allocating friendly resources in an adversarial environment. The only difference was

the constraint that each resource level can take on only binary values. Although this

problem is a mixed integer programming problem, it turned out that its linear pro-

gramming relaxation in conjunction with a receding horizon philosophy was sufficient

for providing us with a reliable path planning. In the following section we pursue a

similar path planning for the attackers.
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4.4 Linear-programming-based attack planning

The question that arises now is whether we are able to apply a path planning for the

attackers similar to that applied for the defenders. The only difference between the

attackers and the defenders is their objective. In particular, the attackers’ objective

is to infiltrate the defenders’ protected zone, while in parallel they have to avoid being

intercepted by the defenders.

Hence, we apply a similar procedure to that described in Section 4.3, according

to which the playing area is divided into sectors, while each team (the defenders or

the attackers) is viewed as a different resource type. Although the resource levels

take on only binary values, this constraint can be relaxed as before. In this case,

the constraints of both teams are linear, which means that we can derive a linear

programming optimization problem for attack.

4.4.1 Linear programming relaxation

The attackers objective could be a weighted sum between the cost of staying out

of the defense zone, −
(
Xdz

1

)T · Xa
1, and the cost of getting closer to the defenders,(

Xd
1

)T · Xa
1. Let wa

dz and wa
d be the weights the attackers attach to getting closer to

the defense zone and staying away from the defenders, respectively. We can always

take

wa
dz + wa

d = 1 (4.23)

Hence, an objective function for the attackers could be

minimize − wa
dz ·

(
Xdz

1

)T · Xa
1 + wa

d ·
(
Xd

1

)T · Xa
1 (4.24)

or equivalently

minimize −
(
wa

dz · Xdz
1 − wa

d · Xd
1

)T · Xa
1 (4.25)
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Since the constraints for the attackers’ resources are the same as those for the

defenders’ resources, except for the defense-zone constraints, the corresponding mixed

integer programming problem for the attackers is similar to that of (4.10) and is given

by the following equation:

minimize −
[ (

wa
dz · Xdz

1 − wa
d · Xd

1

)T
0T

]
·
(

Xa
1

Ua
1

)

subject to

[
I O
O Ta

c − Ta
xu,c

]
·
(

Xa
1

Ua
1

)
≤
[

Ta
xx,id O
O Ta

xx0,c

]
·
(

1
xa

1[0]

)

[
I −Ta

xu

]
·
(

Xa
1

Ua
1

)
=
[

O Ta
xx0

]
·
(

1
xa

1[0]

)

variables Xa
1 ∈ ZNpna

x
+ , Ua

1 ∈ �Npna
u

+

(4.26)

If we relax the binary constraints Xa
1 ∈ ZNpna

x
+ by setting Xa

1 ∈ �Npna
x

+ , the resulting

linear programming relaxation is

minimize −
[ (

wa
dz · Xdz

1 − wa
d · Xd

1

)T
0T

]
·
(

Xa
1

Ua
1

)

subject to

[
I O
O Ta

c − Ta
xu,c

]
·
(

Xa
1

Ua
1

)
≤
[

Ta
xx,id O
O Ta

xx0,c

]
·
(

1
xa

1[0]

)

[
I −Ta

xu

]
·
(

Xa
1

Ua
1

)
=
[

O Ta
xx0

]
·
(

1
xa

1[0]

)

variables Xa
1 ∈ �Npna

x
+ , Ua

1 ∈ �Npna
u

+

(4.27)

Recall that if an optimal solution to the relaxation is feasible for the mixed in-

teger programming problem, it is also an optimal solution to its linear programming

relaxation.

4.4.2 Computation of a suboptimal solution

In general, the solution of the linear programming relaxation is a non-integer vector,

which means that this solution does not belong to the feasible set of the mixed integer
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programming problem. However, as explained in Section 4.3.5, we are able to compute

a suboptimal solution of the mixed integer programming problem of (4.26) by using

an optimal solution of its linear programming relaxation of (4.27).

This suboptimal solution is computed by following a procedure similar to that

applied in Section 4.3.5. In particular, given the optimal control of the linear pro-

gramming relaxation for the whole optimization horizon, Np,

(U∗)a =
[

(u∗)a [t + 0] (u∗)a [t + 1] · · · (u∗)a [t + Np]
]

we are only interested in the first optimal control, i.e., (u∗)a [t] = (u∗)a [t + 0], which

will generally be a non-integer vector between 0 and 1.

Given this first optimal solution of the linear programming relaxation, we construct

a suboptimal solution of the mixed integer programming problem. In particular, among

the resource levels that exit from a sector, we pick up the maximum of them, to which

we assign the value “1”, while the rest of them are assigned the value “0”. In this

way, we define an integer control input that belongs to the feasible set of the mixed

integer programming problem of (4.26), while, in parallel, the sum of the resource

levels remains the same as that of the previous stage.

Algorithmically, according to the definition of the function Uout : SN (S,R)×R×
S → {1, 2, . . . , nu} (see (2.12) in page 18), we define the corresponding function for

the attackers’ resources as

Ua
out : SN a(S,Ra) ×Ra × S → {1, 2, . . . , na

u} (4.28)

where SN a(S,Ra) is the set of neighboring sectors of the attackers’ resources. This

function maps a triple of the form (sk, rj, si), where si ∈ S, rj ∈ Ra and sk ∈
SN a(si, rj), to the row number of the control vector ua that corresponds to the

control level ua
sk←si,rj

, i.e.,

ua (Ua
out (sk, rj, si) , 1) = ua

sk←si,rj
(4.29)
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Let ũa[t] be a suboptimal solution of the mixed integer programming problem at

time t. This solution can be constructed in the following way: For each sector si ∈ S
and each resource type rj ∈ Ra,

1. Define the set

UN a(si, rj) = {Ua
out(sk, rj, si) | sk ∈ SN a(si, rj)}

that includes the row numbers of the control vector ua which correspond to the

control inputs
{
ua

sk←si,rj
| sk ∈ SN a(si, rj)

}
.

2. If xa
si,rj

�= 0, find the row number, θ∗, of (u∗)a [t] that corresponds to the maxi-

mum control level among those ones that exit from sector si, i.e.,

θ∗ = arg max
θ∈UNa(si,rj)

{(u∗)a [t](θ, 1)}

(a) if (u∗)a [t](θ∗, 1) ≥ 1 −∑θ∈UNa(si,rj) {(u∗)a [t](θ, 1)}, which means that the

maximum control level that exits from sector si is greater than the resource

level that remains at that sector, set

ũa[t](θ, 1) =




1 , if θ = θ∗

0 , if θ �= θ∗
, θ ∈ UN a(si, rj)

which implies that the resource level xa
si,rj

will move to the neighboring

sector sk ∈ SN a(si, rj) that satisfies Ua
out(sk, rj, si) = θ∗.

(b) otherwise, set

ũa[t](θ, 1) = 0, ∀θ ∈ UN a(si, rj).

which implies that the resource level xa
si,rj

will remain at sector si.

3. If xa
si,rj

= 0, set

ũa[t](θ, 1) = 0, ∀θ ∈ UN a(si, rj).
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The resulting integer control vector, ũa[t], belongs to the feasible set of the mixed

integer programming problem of (4.26), while the sum of the resource levels remains

the same as the one of the previous stage.

4.4.3 Control algorithm for attack

We computed a suboptimal solution of the mixed integer programming problem, (4.26),

by solving only its linear programming relaxation, (4.27). This solution is implemented

in a receding horizon manner. In particular, the linear-programming-based planning

for the attackers is similar to the corresponding one for the defenders and contains

the following steps:

1. Measure the new state vectors of the defenders, xd, and the attackers, xa.

2. Solve the linear programming relaxation, (4.27), of the mixed integer program-

ming problem of (4.26). Let

(U∗)a =
[

(u∗)a [t + 0] (u∗)a [t + 1] · · · (u∗)a [t + Np]
]

be its optimal control solution for the whole optimization horizon, Np.

3. Given the first optimal control, ua[t] = (u∗)a [t + 0] of the linear programming

relaxation, compute a suboptimal solution, ũa[t], for the mixed integer program-

ming problem, according to Section 4.4.2.

4. Apply only the suboptimal solution, ũa[t].

5. Advance t ← t + 1 and repeat.

Thus, by changing only the objective function of the linear programming path

planning for the defenders, we derived a similar path planning for the attackers. Sim-

ilarly, this planning can be transformed to include other objectives, such as avoidance

of other stationary objects.
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4.5 The enemy’s feedback matrix

The path planning for defense and attack described in the previous sections, are based

on a linear programming optimization problem in conjunction with a receding hori-

zon philosophy. However, in both these optimization problems the objective function

depends on the enemy’s state vector for the whole optimization horizon, which is gen-

erally unknown to the friendly team. In this section, we explore the use of stochastic

feedback matrices for the enemy team.

According to the model simplifications of Section 3.3.1, we assume that the enemy

resources implements a feedback policy Ge, i.e.,

(xe)+ = xe + Be · (Gexe) = (I + BeGe) · xe (4.30)

As mentioned in Section 3.3.2, this feedback matrix can be used for creating

probability maps for the enemy’s future states. More specifically, we are able to

create a feedback matrix Ge
rj

for each enemy resource type rj ∈ Re. Finally, the total

feedback matrix is defined as

Ge =




Ge
r1

O . . . O
O Ge

r2
. . . O

. . . . . . . . . . . .
O O . . . Ge

rne
r


 (4.31)

where ne
r is the number of enemy resource types.

The enemy’s state vector for the whole optimization horizon, Xe, is given by

Xe = Te
xx0,G · xe[0] (4.32)

where Te
xx0,G was defined by equation (3.26).

In the following sections we create several stochastic feedback matrices that can

be used either for defense or for attack. In each case, the creation of the stochastic

feedback matrix is based on the possible objectives of the opposing team.
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4.5.1 Stochastic feedback matrix for defense

The attackers’ first priority is the infiltration of the defense zone, which means that

their objective is to move closer to the defense zone. So, given the sector that an

attacker lies in, it is “more likely” that the attacker (enemy) will move to a sector

that is closer to the defense zone. For this reason, we define a probability measure

ga : {SN a(S,Ra) ∪ S} ×Ra × S → [0, 1] (4.33)

such that the probability that the attackers’ resource type (unit) rj ∈ Ra will move

from sector si ∈ S to sector sk ∈ SN a(si, rj) is

ga
sk←si,rj

=

[
β (si, sdz) +

∑
sn∈SNa(si,rj) {β (sn, sdz)}

]
− β (sk, sdz)

[n̄a
sn(si, rj) − 1] ·

[
β (si, sdz) +

∑
sn∈SNa(si,rj) {β (sn, sdz)}

] (4.34)

while the probability of staying at the same sector is

ga
si←si,rj

=

∑
sn∈SNa(si,rj) {β (sn, sdz)}

[n̄a
sn(si, rj) − 1] ·

[
β (si, sdz) +

∑
sn∈SNa(si,rj) {β (sn, sdz)}

] (4.35)

where sdz is the sector that corresponds to the center of the defense zone, β (sk, sdz)

is the minimum distance (in sectors) from sector sk to the center of the defense zone,

and n̄a
sn(si, rj) is the number of neighboring sectors of sector si ∈ S including itself

that can be reached by the attackers’ resource type rj ∈ Ra in one stage.

It is easily seen that

(1) ga
sk←si,rj

∈ [0, 1], ∀si ∈ S, ∀rj ∈ Ra, ∀sk ∈ {SN a(si, rj) ∪ si}

(2)
∑

sk∈SNa(si,rj) ga
sk←si,rj

+ ga
si←si,rj

= 1, ∀si ∈ S, ∀rj ∈ Ra
(4.36)

which means that this probability measure satisfies the properties of (3.15). Therefore,

according to (3.14) we can define a feedback matrix, Ga
rj

, for each resource type,

rj ∈ Ra.

The probability that an attacker will move to a neighboring sector, given by (4.34),

or remain at the same sector, given by (4.35), depends only on the distance from that
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sector to the defense zone. Since the position of the defense zone does not change

over time, these probabilities do not also change over time. In other words, for each

sector in the arena the probabilities of (4.34) and (4.35) are constant over time and

can be computed off-line.

Furthermore, we can define a feedback matrix, Ga
rj

, for each resource type of the

attackers rj ∈ Ra, so that it includes the transition probabilities ga
sk←si,rj

, given by

(4.34), for all si ∈ S and sk ∈ SN a(si, rj), i.e.,

Ga
rj

(Ua
out(sk, rj, si), si) = ga

sk←si,rj
, ∀si ∈ S, ∀sk ∈ SN a(si, rj) (4.37)

where Ua
out : SN a(S,Ra)×Ra ×S → {1, 2, . . . , na

u} is the function that maps a triple

of the form (sk, rj, si), where si ∈ S, rj ∈ Ra and sk ∈ SN a(si, rj), to the row number

of ua that corresponds to ua
sk←si,rj

. The probability that the defender stays at the

same sector, ga
si←si,rj

, is not included directly in the feedback matrix Ga
rj

since from

(4.36) we have that

ga
si←si,rj

= 1 − ∑
sk∈SNa(si,rj)

ga
sk←si,rj

(4.38)

According to this definition of stochastic feedback matrix Ga
rj

, given any actual

state vector of the attackers we can compute the probability distribution of their

resource levels for more than one stages ahead. This property is very useful, since we

prefer to optimize the defenders’ paths for Np > 1 stages ahead.

Summarizing, the advantages of this feedback matrix are the following:

• It includes all transition probabilities for each sector in the arena.

• It can be computed off-line.

• It can be used in computing the probability distribution of the attackers’ re-

source levels for more than one stage ahead.
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Figure 4.6 (page 80) shows the probability distribution of the attackers’ resource

levels after Np = 2 stages when the actual state vector includes three attackers. We

should expect that the probability that an attacker moves closer to the defense zone

is higher than the probability of moving away from the defense zone. Although this

is the case, according to the definition of Ga
rj

, the difference in the size between these

probabilities is quite small and cannot be easily distinguished in Figure 4.6.

4.5.2 Alternative stochastic feedback matrix for defense

Alternatively, let us define n̄a
dsn(si, rj) as the number of neighboring sectors of sector

si including itself that can be reached by the attackers’ resource type (unit) rj and

are the most probable next positions for that type based on their distance from the

defense zone. In other words, instead of considering all the neighboring sectors of si

as possible next positions of the attackers’ resource type rj, we take into account a

smaller number of neighboring sectors that are the closest ones to the defense zone.

This number of neighboring sectors of si is of our choice, and it can be chosen to be

the same for every sector si ∈ S and resource type rj ∈ Ra, i.e.,

n̄a
dsn(si, rj) = n̄a

dsn, ∀si ∈ S, ∀rj ∈ Ra (4.39)

Let also DSN a(si, rj, n̄
a
dsn) be the set of these sectors. In this case, we can define

the following probability measure:

ga
alt : {DSN a(S,Ra, n̄a

dsn)} ×Ra × S → [0, 1] (4.40)

such that the probability that the attackers’ resource type (unit) rj ∈ Ra will move

from sector si ∈ S to sk ∈ DSN a(si, rj, n̄
a
dsn) is

ga
sk←si,rj ,alt =

[
β (si, sdz) +

∑
sn∈DSNa(si,rj ,n̄a

dsn
) {β (sn, sdz)}

]
− β (sk, sdz)

(n̄a
dsn − 1) ·

[
β (si, sdz) +

∑
sn∈DSNa(si,rj ,n̄a

dsn
) {β (sn, sdz)}

] (4.41)

Similarly to Section 4.5.1 we can define a feedback matrix, Ga
rj ,alt, for each re-

source type rj ∈ Ra of the attackers, so that it includes the transition probabilities,
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ga
sk←si,rj ,alt, given by equation (4.41) for all si ∈ S and sk ∈ DSN a(si, rj, n̄

a
dsn), i.e.,

Ga
rj ,alt (Ua

out(sk, rj, si), si) = ga
sk←si,rj ,alt,

∀si ∈ S, ∀sk ∈ DSN (si, rj, n̄
a
dsn) \ {si}

(4.42)

The probability that the defender stays at the same sector, ga
si←si,rj ,alt, is not

included directly in the feedback matrix Ga
rj ,alt because

ga
si←si,rj ,alt = 1 − ∑

sk∈DSNa(si,rj ,n̄a
dsn)\{si}

ga
sk←si,rj ,alt (4.43)

This feedback matrix has the same advantages with Ga
rj

computed in the previous

section. In other words, Ga
rj ,alt can include the transition probabilities of the attackers

for the whole optimization horizon Np, while these probabilities can be computed off-

line. Figure 4.7 (page 81) shows the probability distribution for several attackers and

for Np = 2, n̄a
dsn = 6.

4.5.3 Stochastic feedback matrix for attack

The defenders’ first priority is the interception of the attackers, which means that

their objective is to move closer to the attackers. So, given the sector that a defender

lies in, it is more likely that a defender (enemy) will move to a sector that is closer to

the next most probable positions (for the whole optimization horizon) of an attacker

(friend).

In particular, we could define a probability measure similar to that of Section

4.5.1 that is conditional on the distances from each defender to the most probable

next positions of each attacker. For this reason, this probability measure depends on

the current state vector of both defenders and attackers, which means that it cannot

be computed off-line. In other words, at each stage and given the current positions

of the attackers and the defenders we have to update the probability distribution of

the defenders.
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Let us define sa
mp,t ∈ N na

r as the vector of the most probable positions (sectors) of

the attackers after t time intervals, i.e., each entry of this vector is given by

sa
mp,t(q, 1) = arg max

si∈S

{
ga

si,rq ,t

}
, q ∈ {1, 2, . . . , na

r} (4.44)

where ga
si,rq ,t is the probability that the attackers’ resource type rq ∈ Ra is at sector

si after t time intervals.

Note that this position is computed by the attackers (friendly team) and is an

estimation of what the defenders (enemy team) “believe” about the most probable

next positions of the attackers. One way to compute ga
si,rq ,t is to use a version of

the stochastic matrix “Ga”, computed in Sections 4.5.1 and 4.5.2, that the defenders

might use.

Given these most probable next positions of the attackers, for each future stage

we define a probability measure for the defenders as

gd
t :
{
SN d(S,Rd) ∪ S

}
×Rd × S → [0, 1] (4.45)

such that the probability that after t time intervals the defenders’ resource type (unit)

rj ∈ Rd moves from sector si ∈ S to sector sk ∈ SN d(si, rj), provided that gd
si,rj ,t �= 0,

is

gd
sk←si,rj ,t =

[
β
(
si, s

a
mp,t

)
+
∑

sn∈SN d(si,rj)

{
β
(
sn, s

a
mp,t

)}]
− β

(
sk, s

a
mp,t

)
[n̄d

sn(si, rj) − 1] ·
[
β
(
si, sa

mp,t

)
+
∑

sn∈SN d(si,rj)

{
β
(
sn, sa

mp,t

)}] (4.46)

while the probability of remaining at sector si is

gd
sk←si,rj ,t =

∑
sn∈SN d(si,rj)

{
β
(
sn, s

a
mp,t

)}
[n̄d

sn(si, rj) − 1] ·
[
β
(
si, sa

mp,t

)
+
∑

sn∈SN d(si,rj)

{
β
(
sn, sa

mp,t

)}] (4.47)

where

β
(
si, s

a
mp,t

)
= min

q∈{1,2,...,na
r}

β
(
si, s

a
mp,t(q, 1)

)
, si ∈ S (4.48)

is the minimum distance (in sectors) from sector si to the most probable positions of

the attackers after t time intervals.
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In case gd
si,rj ,t = 0, i.e., the probability that after t time intervals there is resource

type rj ∈ Rd at sector si ∈ S is zero, we define

gd
sk←si,rj ,t = 0, ∀sk ∈ {SN d(si, rj) ∪ si} (4.49)

Furthermore, we can define a feedback matrix, Gd
rj

, for each resource type of the

defenders rj ∈ Rd, so that it includes the transition probabilities gd
sk←si,rj ,t for all

si ∈ S and sk ∈ SN d(si, rj) and for all future stages of the optimization horizon

t ∈ {1, 2, . . . , Np}, i.e.,

Gd
rj

(
Ud

out(sk, rj, si), si

)
= gd

sk←si,rj ,t, ∀si ∈ S, ∀sk ∈ SN d(si, rj),

∀t ∈ {1, 2, . . . , Np}
(4.50)

where Ud
out : SN d(S,Rd)×Rd ×S → {1, 2, . . . , nd

u} is the function that maps a triple

of the form (sk, rj, si), where si ∈ S, rj ∈ Rd and sk ∈ SN d(si, rj) to the row number

of ud that corresponds to ud
sk←si,rj

. The probability that the defender stays at the

same sector, gd
si←si,rj ,t, is not included directly in the feedback matrix Gd

rj
since for

each future stage t ∈ {1, 2, . . . , Np} the following equation holds:

gd
si←si,rj ,t = 1 − ∑

sk∈SN d(si,rj)

gd
sk←si,rj ,t (4.51)

Figure 4.8 (page 82) shows the probability distribution of the positions of two

defenders after two stages when two attackers are close to them.

4.5.4 Velocity-based stochastic feedback matrix

An alternative stochastic feedback matrix, Gv, can be defined by computing the

previous and current direction of motion of the enemy resources. In particular, the

Figure 4.5 shows the possible directions of motion in an arena of sectors.

If we assume that the distance between any two neighboring sectors is equal to

1, then each of the above directions of motion can be described by a vector. In
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Figure 4.5: Possible directions of motion in an arena of sectors.

particular, according to Figure 4.5, we can define the following directions of motion:

vs0 = (0, 0), vs1 = (−1,−1), vs2 = (0,−1), vs3 = (1,−1),

vs4 = (1, 0), vs5 = (1, 1), vs6 = (0, 1), vs7 = (−1, 1), vs8 = (−1, 0)
(4.52)

where vsi
denotes the direction of motion from the current position, s0, to the next

position, si.

Let vsi,rj
be the current direction of motion of resource type rj ∈ Re that lies in

sector si ∈ S and v+
sk,rj

be the next direction of motion of the same resource type that

moves from si to sk ∈ {SN e(si, rj) ∪ si}. Then we can define a probability measure

that assigns a probability to the inner product of the current and next direction of

motion, i.e.,

gv :
{
〈vsi,rj

,v+
sk,rj

〉 | si ∈ S, rj ∈ Re, sk ∈ {SN e(si, rj) ∪ si}
}
→ [0, 1] (4.53)

Generally speaking, it is more likely that each enemy will retain the same direction

of motion. In other words, the greater the inner product, the greater the probability

that corresponds to this direction of motion.

This probability measure depends on the dynamics of the vehicles. For example,

if the mass of a vehicle is great enough, then the probability that the direction of its

motion will be reversed at the next stage is small. Since this analysis is not restricted
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in any specific multi-vehicle system, we chose an arbitrary gv, which is given by

gv
sk←si,rj

=




0 , if 〈vsi,rj
,v+

sk,rj
〉 < 0

1/12 , if 〈vsi,rj
,v+

sk,rj
〉 = 0

1/4 , if 〈vsi,rj
,v+

sk,rj
〉 > 0

,

si ∈ S, rj ∈ Re, sk ∈ {SN e(si, rj) ∪ si}

(4.54)

This probability measure assigns greater probability to a positive inner product, which

corresponds to a small change in the direction of motion, than to a negative one, which

corresponds to a great change in the direction of motion.

It is easily seen that this probability measure satisfies the following properties:

(1) gv
sk←si,rj

∈ [0, 1], ∀si ∈ S, ∀rj ∈ Re, ∀sk ∈ {SN e(si, rj) ∪ si}

(2)
∑

sk∈{SN e(si,rj)∪si} gv
sk←si,rj

= 1, ∀si ∈ S, ∀rj ∈ Re
(4.55)

which means that this probability measure satisfies the properties of (3.15). Therefore,

according to (3.14), we can define a feedback matrix, Gv
rj

, for each enemy resource

type rj ∈ Re. This feedback matrix includes the transition probabilities gv
sk←si,rj

,

given by (4.54), for all si ∈ S and sk ∈ SN e(si, rj), i.e.,

Gv
rj

(U e
out(sk, rj, si), si) = gv

sk←si,rj
, ∀si ∈ S, ∀sk ∈ SN e(si, rj) (4.56)

where U e
out : SN e(S,Re)×Re ×S → {1, 2, . . . , ne

u} is the function that maps a triple

of the form (sk, rj, si), where si ∈ S, rj ∈ Re and sk ∈ SN e(si, rj), to the row number

of ue that corresponds to ue
sk←si,rj

. The probability that the defender stays at the

same sector, gv
si←si,rj ,t, is not included directly in the feedback matrix Gv

rj
since from

(4.55) we have that

gv
si←si,rj

= 1 − ∑
sk∈SN e(si,rj)

gv
sk←si,rj

(4.57)

According to this definition of the stochastic feedback matrix Gv
rj

, given any actual

state vector of the enemy we can compute the probability distribution of the enemy
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resource levels for only one stage ahead, which is one of the disadvantages of this

feedback matrix. Moreover, since the probabilities are conditional on the previous

direction of motion, this feedback matrix cannot be computed off-line.

4.5.5 Combined stochastic feedback matrix

Both defenders and attackers feedback matrices, Ga and Gd, can be combined with a

velocity-based feedback matrix, Gv. In particular, we could define a new probability

matrix for the attackers, let Gc, as

Gc =
(
Gi + Gv

)
/2, i ∈ {a, d} (4.58)

4.6 Remarks

In this chapter we explored the utility of the linear-programming-based planning for

resource allocation, described in the Chapter 3, in deriving optimal paths for multi-

vehicle control systems with adversaries. In particular, we considered the RoboFlag

competition which involves two teams of robots with opposing interests, the defenders

and the attackers. We derived control algorithms for both defense and attack that

are based on the linear-programming-based planning for resource allocation. In this

case, both defenders and attackers were modelled as different resource types in an

arena of sectors. Moreover, since adversaries are modelled as state-dependent, various

stochastic feedback laws based on their current position and/or velocity can describe

their possible future attitude, which was included in the optimization.
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Figure 4.6: Probability distribution of three attackers after Np = 2 stages based on

the stochastic feedback matrix for defense.
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Figure 4.7: Probability distribution of three attackers after Np = 2 stages based on

the alternative stochastic feedback matrix for defense with n̄a
dsn = 6.
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Figure 4.8: Probability distribution of two defenders after Np = 2 stages based on

the stochastic feedback matrix for attack.

82



CHAPTER 5

Simulations

5.1 Introduction

In this chapter, the multi-vehicle path planning for defense and attack derived for the

RoboFlag competition in Chapter 4 are applied to the “Cornell RoboFlag Simulator”

and to a RoboFlag simulator created in Matlab. Our objective is to test the linear-

programming-based path planning for both defense and attack derived in Sections 4.3

and 4.4, respectively. To this end, we design several versions of the original RoboFlag

competition and we test these plans for both their effectiveness and computational

efficiency.

5.2 The “Cornell RoboFlag Simulator”

The architecture of the “Cornell RoboFlag Simulator” is described in detail by D’Andrea

and Babish in [11], while the complete documentation is given in [33]. This simu-

lator is created in C++ and designed to model the RoboFlag competition between

two teams of robots described by D’Andrea and Murray in [12]. Here we consider a

simpler version of the RoboFlag competition where one of the teams always attack

the other team’s protected zone (defense zone), while the latter one always defends.

This version can also be modelled by the “Cornell RoboFlag Simulator” and consists

of four main parts:

• The arbiter
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• The defenders’ computer

• The attackers’ computer

• The robots

The arbiter is responsible for deciding about the current state of each robot (active

or inactive). In particular, a robot becomes inactive when it is intercepted by an

opponent. Moreover, it sends the current data of the game (positions, velocities and

state of the robots) to both defenders and attackers.

The computer of each team is responsible for computing the next destinations of

robots (high control level). These new destinations are sent to the robots through the

communications network. When a robot receives its new destination it tracks the line

segment between its current position with its next destination (low control level). A

general architecture of the “Cornell RoboFlag Simulator” is given in Figure 5.1 (page

85).

The messaging system of this simulator is similar to that of a real multi-vehicle

system, because it includes a lag between the time a message is sent and the time a

message is received, while there is a small probability that a message can be dropped.

In addition the size of the messages is limited by a simulated bandwidth.
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Figure 5.1: A general architecture of the “Cornell RoboFlag Simulator.”
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5.3 A RoboFlag simulator created in Matlab

We also created a RoboFlag simulator in Matlab. This simulator models the simplified

version of the RoboFlag competition described in the previous section. However, the

messaging system of the “Cornell RoboFlag Simulator” is not included, i.e., there

is no lag between the time a message is sent and the time a message is received,

while the probability that a message can be dropped is zero. Finally, the size of the

messages is not limited by any simulated bandwidth.

Due to these differences, this simulator is simpler than the “Cornell RoboFlag

Simulator,” because every message is sent it will be received with probability one

and without any time delay. For this reason, this simulator will be used in compar-

ing the several path planning algorithms derived in the previous chapter. On the

other hand, since the “Cornell RoboFlag Simulator” is more realistic than the one

created in Matlab, we will also test the linear-programming-based path planning in

this simulator.

5.4 Simulations and Discussion

Several path planning algorithms based on linear programming were tested in both

simulators described in the previous sections. In particular we tested both the control

algorithm for defense described in Section 4.3.6 and the control algorithm for attack

described in Section 4.4.3.

In Figure 5.2 the defenders implement a control algorithm for defense according to

Section 4.3.6 in the RoboFlag simulator created in Matlab. In parallel, a stochastic

feedback matrix for defense is used according to Section 4.5.2 with n̄a
dsn = 6. On

the other hand, the attackers follow pre-specified paths that are unknown to the

defenders. It is easily seen, that although defenders do not know the attackers’ paths,
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they can predict accurately the next positions of the attackers and intercept them.

This game was also simulated in the “Cornell RoboFlag Simulator” which is more

realistic than the one created in Matlab. The resulting paths of the defenders are

shown in Figure 5.3. Even though there is a small lag between the time a message

is sent and the time it is received, the defenders are able to intercept the attackers.

Moreover, this control algorithm for defense is also computationally efficient since it

runs in 3 seconds for three attackers, an arena of 300 sectors and an optimization

horizon of Np = 6 stages. This algorithm can run even faster if we reduce the number

of sectors or the optimization horizon.

In order to check the utility of a velocity-based feedback matrix, we extend the

previously described game. More specifically, now the defenders use a combined

stochastic feedback matrix for defense that includes both a feedback matrix accord-

ing to Section 4.5.2 with n̄a
dsn = 6 and a velocity-based feedback matrix according to

Section 4.5.4. Again the attackers use pre-specified paths that are unknown to the

defenders. The resulting paths of the defenders are shown in Figure 5.4. In compari-

son with Figure 5.2, we noticed that in this case some defenders move faster towards

the attackers due to the fact that their prediction about the attackers’ next positions

is more accurate.

Since the linear-programming-based path planning for defense was satisfactory we

are interested in testing this algorithm against smarter attackers. To this end, the

attackers implement a control algorithm for attack based on Section 4.4.3 and with

optimization horizon Np = 6. The weight that the attackers attach to getting closer

to the defense zone is chosen to be wa
dz = 0.01, which means that wa

d = 0.99. The

attackers also use a stochastic feedback matrix for attack based on Section 4.5.3 in

order to predict the defenders’ future positions. On the other hand, the defenders

implement a control algorithm for defense according to Section 4.3.6 with Np = 6,

in combination with a stochastic feedback matrix for defense based on Section 4.5.2
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with n̄a
dsn = 6.

This game was tested in the RoboFlag simulator created in Matlab and the re-

sulting paths are shown in Figure 5.5. It is easily seen that the attackers try both to

avoid the defenders and at the same time to get closer to the defense zone. However,

only one attacker was finally succeed to infiltrate the defense zone which is quite

reasonable since the defenders implement an optimization path planning for defense.

The question that arises now is whether attackers can do better than that. For this

reason, we implement a slightly different control algorithm for attack while defenders

use the same path planning as in the previous case. In particular, the attackers use

weights wa
dz = 0.01 and wa

d = 0.99 only at the first and last stage of the optimization

horizon, while at any other stage wa
dz = 0 and wa

d = 1, which means that they attach

more weight on avoiding the defenders than getting closer to the defense zone. The

resulting paths are shown in Figure 5.6.

Although only one attacker infiltrated the defense zone, it is obvious that the at-

tackers attach larger weight to avoiding the defenders in comparison with the previous

simulation. On the other hand, the defenders are not able in both Figure 5.5 and

Figure 5.6 to intercept more than two attackers. Thus, it is reasonable to ask whether

the defenders can intercept more attackers or keep them away from the defense zone.

Trying to answer this question an alternative objective function is implemented

for the defenders which was described in Section 4.3.8. In particular, not only do the

defenders try to get closer to the attackers, but also try to stay closer to the defense

zone. We assume that the weight they attach to getting closer to the attackers is

wd
a = 0.95, which means that the weight they attach to getting closer to the defense

zone is wd
lz = 0.05. The resulting paths are shown in Figure 5.7.

Although one attacker infiltrated the defense zone, it is easily seen that defenders

optimization path planning is better than in the previous cases. In particular, the

defenders make the attackers follow longer paths towards the defense zone, which
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means that it is more difficult for the attackers to find a clear path to the defense

zone.

5.5 Remarks

The preceding simulations showed that a linear-programming-based path planning

can be used for either defense or attack in the RoboFlag competition. In particular,

the control algorithm for defense (Section 4.3.6) in combination with a stochastic feed-

back matrix for defense (Section 4.5.2) and/or a velocity-based stochastic feedback

matrix (Section 4.5.4) has satisfactory results against “smart” attackers. Moreover,

an alternative objective function for defense which also includes the cost of staying

away from the defense zone enforces attackers to follow longer paths towards the

defense zone. On the other hand, the control algorithm for attack (Section 4.4.3)

guarantees that a number of attackers infiltrate the defense zone independently of

the defenders’ path planning.

89



Figure 5.2: A control algorithm for defense with Np = 6 is applied in the RoboFlag

simulator created in Matlab. A stochastic feedback matrix for defense with n̄a
dsn = 6

is used. The attackers follow pre-specified paths unknown to the defenders.
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Figure 5.3: A control algorithm for defense with Np = 6 is applied in the “Cornell

RoboFlag Simulator”. A stochastic feedback matrix for defense with n̄a
dsn = 6 is used.

The attackers follow pre-specified paths unknown to the defenders.
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Figure 5.4: A control algorithm for defense with Np = 6 is applied in the RoboFlag

simulator created in Matlab. A stochastic feedback matrix for defense with n̄a
dsn = 6

combined with a velocity-based feedback matrix is used. The attackers follow

pre-specified paths unknown to the defenders.
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Figure 5.5: A control algorithm for defense with Np = 6 is applied in the RoboFlag

simulator created in Matlab. The defenders implement a stochastic feedback matrix

for defense with n̄a
dsn = 6. The attackers use a control algorithm for attack with

Np = 6, wa
dz = 0.01 and wa

d = 0.99 in combination with a stochastic feedback matrix

for attack.
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Figure 5.6: A control algorithm for defense with Np = 6 is applied in the RoboFlag

simulator created in Matlab. The defenders implement a stochastic feedback matrix

for defense with n̄a
dsn = 6. The attackers use a control algorithm for attack with

wa
dz = 0.01 and wa

d = 0.99 only at the first and last stage of the optimization horizon,

otherwise wa
dz = 0 and wa

d = 1. The attackers also implement a stochastic feedback

matrix for attack.
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Figure 5.7: A control algorithm for defense with Np = 6 is applied in the RoboFlag

simulator created in Matlab. The defenders use the objective function of Section 4.3.8

with weights wd
a = 0.95 and wd

lz = 0.05 and a stochastic feedback matrix for defense

with n̄a
dsn = 6. The attackers use a control algorithm for attack with wa

dz = 0.01

and wa
d = 0.99 only at the first and last stage of the optimization horizon, otherwise

wa
dz = 0 and wa

d = 1. The attackers also use a stochastic feedback matrix for attack.
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CHAPTER 6

Conclusions and Future Work

This thesis was a small contribution to the problem of multi-vehicle path planning in

an adversarial environment. Our objective was to find an optimization method that

will provide both online inclusion of the environment’s uncertainties and computa-

tional efficiency which is still an open issue. To this end, we explored the utility of

linear programming for trajectory planning in multi-vehicle systems with adversaries.

More specifically, we first constructed a model that describes the evolution of sev-

eral resources in an arena of sectors. This model is a large-scale linear flow subject to

various positivity constraints and can be used in describing situations where friendly

and enemy resources are engaged in an arena of sectors. The reason for this choice is

grounded on the linearity of this model that allows for using linear objective functions

in an optimization problem for friendly planning.

Although enemy resources can be viewed as a disturbance to the system of friendly

resources, they can be modelled as state dependent. Based on that we derived a

linear-programming-based planning for friendly resources allocation. Moreover, this

method was grounded on the assumption that the adversaries follow a stochastic

feedback matrix which can describe their possible future attitude and is included in

the optimization.

Then, we explored the utility of this linear-programming-based planning for re-

sources allocation in deriving optimal paths for multi-vehicle control systems with

adversaries. In particular, we considered the RoboFlag competition which involves

two teams of robots with opposing interests, the defenders and the attackers. We
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derived control algorithms for both defense and attack that are based on the linear-

programming-based planning for resources allocation. In this case, both defenders

and attackers are modelled as different resource types in an arena of sectors. More-

over, since adversaries are modelled as state-dependent, various stochastic feedback

laws based on their current position and/or velocity could describe their possible

future attitude, which is included in the optimization.

Finally, we tested these algorithms for either defense or attack in the RoboFlag

simulator. In particular, the control algorithm for defense in combination with a

stochastic feedback matrix for defense and/or a velocity-based stochastic feedback

matrix gives satisfactory results against “smart” attackers, while at the same time

was computationally efficient. On the other hand, the control algorithm for attack

guarantees that a number of attackers infiltrate the defense zone independently of the

defenders’ path planning.

Although these algorithms were tested only in the RoboFlag simulator, it can

also be used in deriving efficient paths in other multi-vehicle tasks. In particular,

the objective functions used in these optimizations can be easily modified to include

any other obstacle avoidance tasks and in different environments. Moreover, any

possible uncertainty of the environment can be modelled using stochastic feedback

matrices which can be easily included in the optimization problem. In other words,

the proposed path planning could be a tool for deriving efficient paths in a great

variety of future multi-vehicle tasks.
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