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C Optistin ety

Challenges of decentralized opt.:
(C1) Dynamic optimization

. -==| (C2) Measurement-based opt.

(C3) Efficiency and robustness *s. Multi-agent optimization
R (C4) Fast response

Centralized optimization ,.*
B

Issues of centralized optimization:
(I1) Unknown components’ details
12) Unknown disturbances

(
(13) Unknown interdependencies
(

14) Limited computational resources
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e Challenges

* Unknown objective function
e Unknown disturbances

e [nstead:

o Distributed sensing/actuation
® Measurement-based opt.

e New challenges:

e Optimization uncertainty
e Adaptivity

* Noisy measurements

e Convergence speed
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e Bin-packing

e Routing

e Channel access

Perturbed Learning Automata in Positive Utility Games
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e Main elements
e Payoff-based learning

e Large (coordination) games
e Convergence guarantees

o Specifically, this work is about
e Reinforcement learning

e Convergence guarantees in large games
e Specialization to coordination games
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@ Perturbed Learning Automata

@® Stochastic Stability

® Specialization to Coordination Games

O Summary
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Perturbed Learning Automata

@ Perturbed Learning Automata
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Perturbed Learning Automata
®0000000

e Learning Automata:
o Agents revise their decisions repeatedly
e Information is only /ocal
e Agents observe only their own utility
e Agents reinforce an action through

e repeated selection
e reward size

o |Introduced/analyzed first by Tsetlin (1973)

one-step
delay

“Learning automaton"
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Perturbed Learning Automata
0O@000000

e Each agent i has a finite set of actions A;

e Each agent i select actions based on strategy

gil
i

s

€ A(JA)
Ti| Al
e Each agent i receives a utility (or payoff),

ui:A—>R+
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Perturbed Learning Automata
0O@000000

e Each agent i has a finite set of actions A;

e Each agent i select actions based on strategy

gil
i

s

€ A(JA)
Ti| Al
e Each agent i receives a utility (or payoff),

uj A — ]R+
e Example:

- 2 players, 2 actions
- strategy: e.g., o; = (0.2,0.8)
- utility: e.g., ui(A,A) = 2.

A B
b bl
b )
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Perturbed Learning Automata
[e]e] lele]elele)

At each time period k = 0, 1,2, ..., each agent i

© Action update: Randomize using strategy oi(k) = x;(k),

a(k) = randg, [A;]
@® Performance Observation:

@ Strategy update:

u; = ui(a(k))

xi(k+1) = xi(k) + e(k) - ui(a(k)) - (eq;@) — xi(k))

Perturbed Learning Automata in Positive Utility Games
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Perturbed Learning Automata
[e]e] lele]elele)

At some time k, agent i

@ Action update: Selects «;(k) = A based on strategy

0.2
““):( QS)
@® Performance Observation:

@ Strategy update:

0.2 4 1.6¢ 0.2
08—16e | <

0.8

A
B
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Perturbed Learning Automata
[e]e] lele]elele)

At some time k, agent i

@ Action update: Selects «;(k) = A based on strategy

0.2
““):( QS)
@® Performance Observation:

@ Strategy update:

0.2 4 1.6¢ 0.2
08—16e | <

0.8

ui = uj(AA)=2

Note:

e x;(k) increases in the direction of the selected action

e x;(k) increases proportionally to the observed performance
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Perturbed Learning Automata
[e]e]e] le]elele)

Action update:
ai(t) = randg, iy [Ai],  0i(k) = xi(k)
Strategy update:
xi(k+ 1) = x;(k) + (k) - ui(u(k)) - [ea;) — Xi(k)]
o Arthur (1993), Posch (1997) models:
1
i(k) £
a0 = o T utat)
— Excluding convergence to non-Nash equilibria.
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Perturbed Learning Automata
[e]e]e] le]elele)

Action update:

ai(t) = randc,i(k) [A,] 5
Strategy update:

O’i(k) = xi(k)

xi(k+ 1) = x;(k) + (k) - ui(u(k)) - [ea;) — Xi(k)]

o Arthur (1993), Posch (1997) models:

ei(k) £

1

T ok + ui(a(k)
— Excluding convergence to non-Nash equilibria.

(k) &

e Urn Process: [Hopkins & Posch (2005), Erev & Roth (1998)]

1

Vi(k) + ui(eu(k))
+ Excluding convergence to non-Nash equilibria.
— Convergence to Nash equilibria only in 2-player partnership games
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Perturbed Learning Automata
[e]e]e]e] lelele)

Action update:

ai(t) = randc,i(k) [A,] 5
Strategy update:

O’i(k) = x,-(k)

e Narendra & Thathachar (1989):

xi(k+ 1) = x;(k) + (k) - ui(u(k)) - [ea;) — Xi(k)]

ui(a(k)) € [0,1]
— Convergence to Nash equilibria only in identical interest games

— Extension to large games requires an absolute monotonocity condition.
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Perturbed Learning Automata
[e]e]e]e] lelele)

Action update:

ai(t) = randc,i(k) [A,] 5
Strategy update:

O’i(k) = x,-(k)

e Narendra & Thathachar (1989):

xi(k+ 1) = x;(k) + (k) - ui(u(k)) - [ea;) — Xi(k)]

ui(eu(k)) € [0,1]
— Convergence to Nash equilibria only in identical interest games

— Extension to large games requires an absolute monotonocity condition.
o \Verbeeck et al (2007):

— Introduced a coordinated exploration phase
+ Convergence to efficient Nash equilibria

Perturbed Learning Automata in Positive Utility Games
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Perturbed Learning Automata
[e]e]e]e]e] lele)

Action update:

ai(t) = randg, (i [A] ,
Strategy update:

oi(k) = (1 — XN)xi(k) + A\1/n
xi(k+ 1) = xi(k) + € (k) - ui((k)) - [ea,w) — xi(k)]

e Chasparis, Shamma & Rantzer (2014)

oi(k) = (1 — Nxi(k) + A\1/n
+ excludes convergence to non-Nash equilibria

+ guarantees global convergence to pure Nash equilibria in potential games
— global convergence in generic coordination games is not shown

Perturbed Learning Automata in Positive Utility Games

=

G. Chasparis



Perturbed Learning Automata
[e]e]e]e]e]e] Jo)

A B
A 2,2 0,0
B 0,0 1,1

e equilibrium-selection mechanism

- We can get convergence to desirable outcomes
- Modified selection rules may be required

® measurement-based dynamics

- Agents only observe performance measurements

e “handles” noisy observations

- noise is filtered out through the strategy-vector formulation

- demonstrated in the analysis of Hopkins and Posch (2005)

scch .|

=

G. Chasparis

A



Perturbed Learning Automata
0O000000e

A B
A 2,2 0,0
B 0,0 1,1

o [ssues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.

- Lyapunov-based techniques are not appropriate for large games

Perturbed Learning Automata in Positive Utility Games
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Perturbed Learning Automata
0O000000e

A B
A 2,2 0,0
B 0,0 1,1

o [ssues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.

- Lyapunov-based techniques are not appropriate for large games
o Contributions

e a stochastic stability analysis for perturbed learning automata

* global convergence guarantees (circumvents issues of Lyapunov-based analysis)
e specialization to coordination games
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tic Stability

@® Stochastic Stability
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Stochastic Stability
[ 1o}

Strategy Update:

Action selection:

xi(k+1) =xi(k) + € - ui(a(k)) - [ea,-(k) — xi(k)]
Note:

oi(k) = (1 — MNxi(k) + A\1/n

o Defines an induced Markov chain in:

o Infinite dimensional with t.p.f. P

Z=AxAn)

Assumption: u;(a)) > Oforalliand o € A.
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Stochastic Stability
e0

Strategy Update:

Action selection:

xi(k+1) = xi(k) + e - ui(ak)) - [ea, ) — xi(k)]

oi(k) = (1 — MNxi(k) + A\1/n
For \ = 0, the probability that eventually agents play the same action profile is 1
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Strategy Update:

Action selection:

xi(k+1) = xi(k) + e - ui(ak)) - [ea, ) — xi(k)]

oi(k) = (1 — MNxi(k) + A\1/n
For \ = 0, the probability that eventually agents play the same action profile is 1

Reduce infinite dimensional P to finite dimensional w (isomorphic with A).
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Stochastic Stability
[ 1o}

Strategy Update:

Action selection:

xi(k+1) = xi(k) + e - ui(ak)) - [ea, ) — xi(k)]

oi(k) = (1 — Nxi(k) + A\1/n
There exists a unique probability vector = such that:
@ ux= > caTadal)asrlo,
@  is an invariant distribution of the (finite-state) Markov chain P

Paa’ = tl_l)r(l;lo QPZ(O‘7N5(QI));
for any e > 0, where Q is the t.p.f. of one player trembling.
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Stochastic Stability
[ 1o}

Strategy Update:

Action selection:

xi(k+1) = xi(k) + e - ui(ak)) - [ea, ) — xi(k)]

oi(k) = (1 — Nxi(k) + A\1/n
There exists a unique probability vector = such that:
@ ux= > caTadal)asrlo,
@  is an invariant distribution of the (finite-state) Markov chain P

Paa’ = tl_l)r(l;lo QPZ(O‘7N5(QI));
for any e > 0, where Q is the t.p.f. of one player trembling.

Infinite dimensional = Finite dimensional Markov chain
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Stochastic Stability
(o] }

For sufficiently small step-size e > 0, the one-step transition probabilities (of the finite
approximation) satisfy:
P aa! ¥ 'V%i
for some negative constant n(9).

il&exp( n(%) >

euj(a’)
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Stochastic Stability
(o] }

For sufficiently small step-size e > 0, the one-step transition probabilities (of the finite
approximation) satisfy:
P aa! ¥ 'V%i
for some negative constant n(9).

il&exp( n(%) >

euj(a’)
[el——-11 [e——-—1
é-resistance:
1
eslale) = > ——
(@@ a®) euj(a(0) 0o
(W-graphs)
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Stochastic Stability
(o] }

For sufficiently small step-size e > 0, the one-step transition probabilities (of the finite

approximation) satisfy:

s n(9)
Paar = ’Y%T(} P (euj(a’)

for some negative constant n(9).

el——-—1 e——-—1
é-resistance:

. 1
psale) = —
(@S0 @)

O0—
(W-graphs)
As e | 0, the set of stochastically stable action profiles A* is such that, for any § > 0,

max @:s(a®) < min (o
a*eA*sO[S( ) ae.A\.A*LPa()

where ¢} denotes minimum resistance over all g.

A

(=1
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Specialization to Coordination Games

® Specialization to Coordination Games
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Specialization to Coordination Games
@00

A strategic-form game satisfying the positive-utility property is a coordination game if,
for every action profile o and player i, uj(a, a—;) > uj(a;, ;) for any o] € BR;(«).
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zation to Coordination Games

A strategic-form game satisfying the positive-utility property is a coordination game if,

for every action profile o and player i, uj(a, a—;) > uj(a;, ;) for any o] € BR;(«).

In any coordination game, ase | 0 and X | 0,
S* C Sne
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Specialization to Coordination Games
@00

A strategic-form game satisfying the positive-utility property is a coordination game if,

for every action profile o and player i, uj(a, a—;) > uj(a;, ;) for any o] € BR;(«).

In any coordination game, ase | 0 and X | 0,
S* C Sne

e Example: Network Formation Games.
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Specialization to Coordination Games
oeo

b a b
o
A a,a b,c
B_ab dd %)
a a d
One-step s4,4)-graphs and payoff change.
@ Compute resistances of s-graphs
® Compare minimum resistances
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rturbed Learning Automata stic Stability Specialization to Coordination Games
ooe

Proposition

Consider the 2-player, 2-action game of witha > ¢ > 0,d > b > 0, and a > d. Denote
s(a,4) @nd s gy as the p.s.s.’s corresponding to action profiles (A,A) and (B, B),
respectively. The following hold:

(a) ifa—c<d—b,then

lim hrn s =1,

el0 A\
i.e., (B, B) corresponds to the unique stochast/cally stable state;
(b) ifa—c>d—bandc < b, then

lim lim 7rg
€10 L0

5.8 =

an =L

i.e., (A,A) corresponds to the unique stochastically stable state.
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@ Summary

Perturbed Learning Automata in Positive Utility Games

=

G. Chasparis

A

Summary



Summary
[ ]

Contribution Snapshot
- Strong Convergence in Strategic-Form Games
Features/Conditions Reinforcement-based loarmi Aspiration-based
learning Q-learning learning
(Structural) Assumptions:
2 players v v v
> 2 players v o v
Potential games v v v
Coordination games v o v
Weakly-acyclic games o o v
Convergence to:
Nash equilibria v NV v
(Pareto) Efficient Nash equil. o o v
(Pareto) Efficient outcomes o o v
Additional features:
Noisy observations v v o
Constant step-size v o v

e Aspiration-based learning:

® Benchmark-based learning (Marden, Young, Arslan, Shamma, 2009)
o Trial-and-error learning (Young, 2011)

* Mood-based learning (Marden, Young, Pao, 2014)

* Average Testing (Arieli, Babichenko, 2011)
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