Georgios C. Chasparis

Department of Data Analysis Systems Software Competence Center Hagenberg GmbH, Austria

JKU

Linz, Austria May 3rd, 2019

Outline

Centralized vs Decentralized Opt

2 Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications

Outline

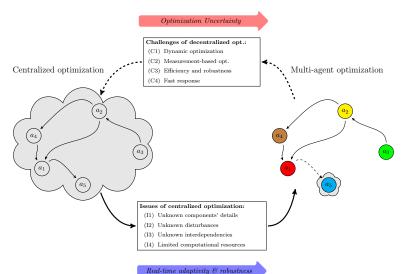
1 Centralized vs Decentralized Opt

2 Perturbed Learning Automata

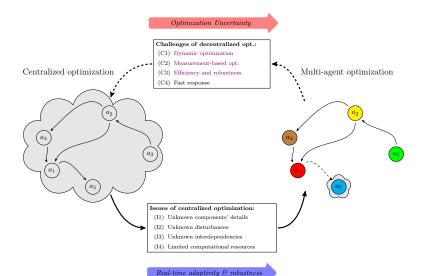
3 Stochastic Stability

4 Scheduling Parallelized Applications

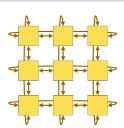
Centralized vs Decentralized Optimization



•00



- Why centralized opt. fails?
 - Unknown application details
 - Unknown disturbances
 - Limited computational resources



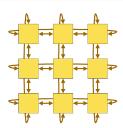
Parallel deployment



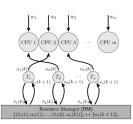
Adaptive Resource Allocation

Challenges (Resource-Aware Applications)

- Why centralized opt. fails?
 - Unknown application details
 - Unknown disturbances
 - Limited computational resources
- Instead: Measurement-based opt.
 - Performance indices may be unknown
 - Immediate reaction to performance drops
 - Reduced computational complexity



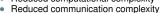
Parallel deployment

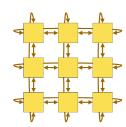


Adaptive Resource Allocation

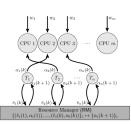
Challenges (Resource-Aware Applications)

- Why centralized opt. fails?
 - Unknown application details
 - Unknown disturbances
 - Limited computational resources
- Instead: Measurement-based opt.
 - Performance indices may be unknown
 - Immediate reaction to performance drops
 - Reduced computational complexity
- + Distributed sensing/actuation
 - Localized disturbance rejection
 - Reduced computational complexity





Parallel deployment



Adaptive Resource Allocation

Challenges (Resource-Aware Applications)

Why centralized opt. fails?

- Unknown application details
- Unknown disturbances
- Limited computational resources

Instead: Measurement-based opt.

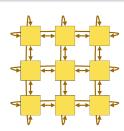
- Performance indices may be unknown
- Immediate reaction to performance drops
- Reduced computational complexity

+ Distributed sensing/actuation

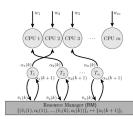
- Localized disturbance rejection
- Reduced computational complexity
- Reduced communication complexity

Additional challenges:

- Optimization uncertainty
- Convergence speed



Parallel deployment

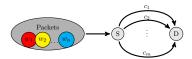


Adaptive Resource Allocation

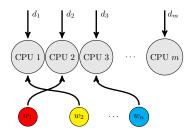
- Additional (structural) assumptions:
 - "Alignment" of interests
- Challenges remain:
 - · distributed sensing/actuation
 - measurement-based learning
 - optimization uncertainty
 - convergence properties

- Additional (structural) assumptions:
 - · "Alignment" of interests
- Challenges remain:
 - distributed sensing/actuation
 - measurement-based learning
 - optimization uncertainty
 - convergence properties

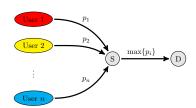
- Additional (structural) assumptions:
 - "Alignment" of interests
- Challenges remain:
 - distributed sensing/actuation
 - measurement-based learning
 - optimization uncertainty
 - convergence properties



- Additional (structural) assumptions:
 - · "Alignment" of interests
- Challenges remain:
 - · distributed sensing/actuation
 - measurement-based learning
 - · optimization uncertainty
 - convergence properties



- Additional (structural) assumptions:
 - · "Alignment" of interests
- Challenges remain:
 - · distributed sensing/actuation
 - measurement-based learning
 - · optimization uncertainty
 - convergence properties



Outline

1 Centralized vs Decentralized Op-

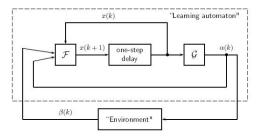
2 Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications

• Learning Automata:

- Agents revise their decisions repeatedly
- Information is only local
 - · Agents observe only their own utility
- · Agents reinforce an action through
 - repeated selection
 - reward size
- Introduced/analyzed first by Tsetlin (1973)



Strategic-form Games: Basic Notation/Terminology

Each agent i select actions based on the strategy

$$\sigma_{i} \triangleq \left(\begin{array}{c} \sigma_{i1} \\ \vdots \\ \sigma_{i|\mathcal{A}_{i}|} \end{array}\right) \in \Delta\left(|\mathcal{A}_{i}|\right)$$

Each agent *i* receives a *utility* (or *payoff*),

$$u_i: \mathcal{A} \to \mathbb{R}_+$$

Strategic-form Games: Basic Notation/Terminology

Each agent i select actions based on the strategy

$$\sigma_{i} \triangleq \begin{pmatrix} \sigma_{i1} \\ \vdots \\ \sigma_{i|\mathcal{A}_{i}|} \end{pmatrix} \in \Delta\left(|\mathcal{A}_{i}|\right)$$

Each agent i receives a utility (or payoff),

$$u_i: \mathcal{A} \to \mathbb{R}_+$$

- Example:
 - 2 players, 2 actions
 - strategy: e.g., $\sigma_i = (0.2, 0.8)$
 - utility: e.g., $u_i(A, A) = 2$.

	\boldsymbol{A}	\boldsymbol{B}
A	2, 2	0, 0
В	0, 0	1, 1

(Variable structure) Learning Automata

At each time period k = 0, 1, 2, ..., each agent i

Action update: Randomize using strategy $x_i(k)$,

$$\alpha_i(k) = \operatorname{rand}_{x_i}[A_i]$$

Performance Observation:

$$u_i = u_i(\alpha(k))$$

3 Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon(k) \cdot u_i(\alpha(k)) \cdot (e_{\alpha_i(k)} - x_i(k))$$

At some time k, agent i

Action update: Selects $\alpha_i(k) = A$ based on strategy

$$x_i(k) = \left(\begin{array}{c} 0.2\\ 0.8 \end{array}\right)$$

Performance Observation:

$$u_i = u_i(A,A)=2$$

Strategy update:

$$\left(\begin{array}{c} 0.2 + 1.6\epsilon \\ 0.8 - 1.6\epsilon \end{array}\right) \leftarrow \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right) + \epsilon \cdot 2 \cdot \left[\left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right)\right]$$

Example:

$$\begin{array}{c|cc} & A & B \\ \hline A & 2,2 & 0,0 \\ \hline B & 0,0 & 1,1 \\ \end{array}$$

At some time k, agent i

Action update: Selects $\alpha_i(k) = A$ based on strategy

$$x_i(k) = \left(\begin{array}{c} 0.2\\ 0.8 \end{array}\right)$$

Performance Observation:

$$u_i = u_i(A,A)=2$$

Strategy update:

$$\left(\begin{array}{c} 0.2 + 1.6\epsilon \\ 0.8 - 1.6\epsilon \end{array}\right) \leftarrow \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right) + \epsilon \cdot 2 \cdot \left[\left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right)\right]$$

Note:

- $x_i(k)$ increases in the direction of the selected action
- $x_i(k)$ increases *proportionally to* the observed performance

Prior Schemes: Erev-Roth type dynamics

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Arthur (1993), Posch (1997) models:

$$\epsilon_i(k) \triangleq \frac{1}{ck^{\nu} + u_i(\alpha(k))}$$

Excluding convergence to non-Nash equilibria.

Prior Schemes: Erev-Roth type dynamics

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Arthur (1993), Posch (1997) models:

$$\epsilon_i(k) \triangleq \frac{1}{ck^{\nu} + u_i(\alpha(k))}$$

- Excluding convergence to non-Nash equilibria.
- Urn Process: [Hopkins & Posch (2005), Erev & Roth (1998)]

$$\epsilon_i(k) \triangleq \frac{1}{V_i(k) + u_i(\alpha(k))}$$

- Excluding convergence to non-Nash equilibria.
- Convergence to Nash equilibria only in 2-player partnership games

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Narendra & Thathachar (1989):

$$u_i(\alpha(k)) \in [0,1]$$

- Convergence to Nash equilibria only in identical interest games
- Extension to large games requires an absolute monotonocity condition.

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Narendra & Thathachar (1989):

$$u_i(\alpha(k)) \in [0,1]$$

- Convergence to Nash equilibria only in identical interest games
- Extension to large games requires an absolute monotonocity condition.
- Verbeeck et al (2007):
 - Introduced a coordinated exploration phase
 - Convergence to efficient Nash equilibria

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Chasparis, Shamma & Rantzer (2014)

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

- excludes convergence to non-Nash equilibria
- guarantees global convergence to pure Nash equilibria in potential games
- global convergence in generic coordination games is *not* shown

$$\begin{array}{c|cccc}
A & B \\
\hline
2,2 & 0,0 \\
0,0 & 1,1
\end{array}$$

- equilibrium-selection mechanism
 - We can get convergence to desirable outcomes
 - Modified selection rules may be required
- measurement-based dynamics
 - Agents only observe performance measurements
- "handles" noisy observations
 - noise is filtered out through the strategy-vector formulation
 - demonstrated in the analysis of Hopkins and Posch (2005)

$$\begin{array}{c|cccc}
 & A & B \\
\hline
 A & 2,2 & 0,0 \\
\hline
 B & 0,0 & 1,1
\end{array}$$

Issues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.
- Lyapunov-based techniques are not appropriate for large games

$$\begin{array}{c|cccc}
 & A & B \\
\hline
 A & 2,2 & 0,0 \\
\hline
 B & 0,0 & 1,1
\end{array}$$

Issues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.
- Lyapunov-based techniques are not appropriate for large games

Contributions

- a stochastic stability analysis for perturbed learning automata
- global convergence guarantees (circumvents issues of Lyapunov-based analysis)
- specialization to coordination games

Outline

1 Centralized vs Decentralized Op

Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications

•000

Stochastic Stability

Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

Note:

Defines an induced Markov chain in:

$$\mathcal{Z} \doteq \mathcal{A} \times \Delta(n)$$

• Infinite dimensional with t.p.f. P_{λ}

Assumption: $u_i(\alpha) > 0$ for all i and $\alpha \in \mathcal{A}$.

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control. 2018.

Stochastic Stability

Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

•000

Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

Proposition

For $\lambda = 0$, the probability that eventually agents play the same action profile is 1

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. イロト イポト イラト イラト

Stochastic Stability

Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

•000

Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

Proposition

For $\lambda = 0$, the probability that eventually agents play the same action profile is 1

Remark

Reduce infinite dimensional P_{λ} to finite dimensional π (isomorphic with A).

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. イロト イポト イラト イラト

Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

Theorem

There exists a unique probability vector π such that:

- 1 $\mu_{\lambda} \Rightarrow \sum_{\alpha \in A} \pi_{\alpha} \delta_{\alpha}(\cdot)$ as $\lambda \downarrow 0$,
- 2π is an invariant distribution of the (finite-state) Markov chain \hat{P}

$$\hat{P}_{\alpha\alpha'} \doteq \lim_{t \to \infty} QP^{t}(\alpha, \mathcal{N}_{\varepsilon}(\alpha')),$$

for any $\varepsilon > 0$, where Q is the t.p.f. of one player trembling.

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 P > 4 B > 4 B > -

Stochastic Stability

Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[e_{\alpha_i(k)} - x_i(k) \right]$$

0000

Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

Theorem

There exists a unique probability vector π such that:

- 1 $\mu_{\lambda} \Rightarrow \sum_{\alpha \in A} \pi_{\alpha} \delta_{\alpha}(\cdot)$ as $\lambda \downarrow 0$,
- 2π is an invariant distribution of the (finite-state) Markov chain \hat{P}

$$\hat{P}_{\alpha\alpha'} \doteq \lim_{t \to \infty} QP^{t}(\alpha, \mathcal{N}_{\varepsilon}(\alpha')),$$

for any $\varepsilon > 0$, where Q is the t.p.f. of one player trembling.

Infinite dimensional

Finite dimensional Markov chain

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 B > 4 B > 4 B >

Lemma

For sufficiently small $\epsilon > 0$, the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant $\eta(\delta)$.

Lemma

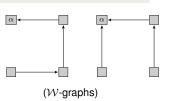
For sufficiently small $\epsilon>0$, the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant $\eta(\delta)$.

 δ -resistance:

$$\varphi_{\delta}(\alpha|g) \doteq \sum_{(\alpha^{(k)} \to \alpha^{(\ell)})} \frac{1}{\epsilon u_{j}(\alpha^{(\ell)})}$$



δ -resistance

Lemma

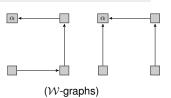
For sufficiently small $\epsilon > 0$, the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant $\eta(\delta)$.

 δ -resistance:

$$\varphi_{\delta}(\alpha|g) \doteq \sum_{(\alpha^{(k)} \to \alpha^{(\ell)})} \frac{1}{\epsilon u_j(\alpha^{(\ell)})}$$



Theorem

As $\epsilon \downarrow 0$, the set of stochastically stable action profiles A^* is such that, for any $\delta > 0$,

$$\max_{\alpha^* \in \mathcal{A}^*} \varphi_{\delta}^*(\alpha^*) < \min_{\alpha \in \mathcal{A} \setminus \mathcal{A}^*} \varphi_{\delta}^*(\alpha)$$

where φ_{δ}^* denotes minimum resistance over all g.

Specialization to Coordination Games

Definition (Coordination games)

A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile α and player i, $u_j(\alpha'_i, \alpha_{-i}) \geq u_j(\alpha_i, \alpha_{-i})$ for any $\alpha'_i \in BR_i(\alpha)$.

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control. 2018.

Specialization to Coordination Games

Definition (Coordination games)

A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile α and player i, $u_i(\alpha'_i, \alpha_{-i}) \geq u_i(\alpha_i, \alpha_{-i})$ for any $\alpha'_i \in BR_i(\alpha)$.

Theorem

In any coordination game, as $\epsilon \downarrow 0$ and $\lambda \downarrow 0$,

$$\mathcal{S}^*\subseteq\mathcal{S}_{NE}$$

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 B > 4 B > 4 B > ...

Definition (Coordination games)

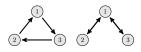
A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile α and player i, $u_j(\alpha'_i, \alpha_{-i}) \geq u_j(\alpha_i, \alpha_{-i})$ for any $\alpha'_i \in BR_i(\alpha)$.

Theorem

In any coordination game, as $\epsilon \downarrow 0$ and $\lambda \downarrow 0$,

$$\mathcal{S}^* \subseteq \mathcal{S}_{NE}$$

Example: Network Formation Games.



G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018.

Contribution Snapshot

Features/Conditions -	Strong Convergence in Strategic-Form Games		
	Reinforcement-based learning	Q-learning	Aspiration-based learning
(Structural) Assumptions:			
2 players	✓	√	√
> 2 players	✓	0	✓
Potential games	✓	√	√
Coordination games	✓	0	√
Weakly-acyclic games	0	0	✓
Convergence to:			
Nash equilibria	✓	√	√
(Pareto) Efficient Nash equil.	0	0	✓
(Pareto) Efficient outcomes	0	0	√
Additional features:			
Noisy observations	✓	✓	0
Constant step-size	✓	0	✓

Aspiration-based learning:

- Benchmark-based learning (Marden, Young, Arslan, Shamma, 2009)
- Trial-and-error learning (Young, 2011)
- Mood-based learning (Marden, Young, Pao, 2014)
- Aspiration learning (Chasparis, Arapostathis, Shamma, 2013)

Outline

1 Centralized vs Decentralized Op-

Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications

Scheduling for Parallel Applications

Questions: how to?

- map components/threads and data to the available computing resources
- dvnamically reschedule and migrate components and data between resources

Prior work:

- Static mapping approaches:
 - make decisions prior to execution
 - involve memory-aware scheduling techniques [Markatos & LeBlanc '91]
 - involve optimization for near-optimal instantiation [Brown et al '14]
- Dynamic mapping approaches:
 - make decisions during runtime
 - involve exhaustive-search type algorithms for best bindings [Klug et al '11]
 - involve scheduling hints about affinity issues [Broquedis et al '10. Olivier et al '11]

Criticism:

- computational complexity
- failure to consider irregular application behavior
- failure to exploit feedback information from the application

Framework

Setup

- n threads result from a parallelized application
- each thread needs to be executed on a NUMA/CPU node

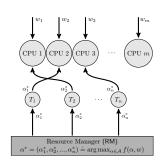
Resource Manager: Assumptions

- application's details are not known
- threads may not be idled or postponed
- each thread may be assigned only to a single CPU

Centralized (for all threads) objective:

$$\max_{\alpha \in \mathcal{A}} f(\alpha, w)$$

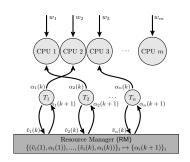
- A: set of allocations
- w: external disturbances



- Example: average processing speed
- Issues:
 - only measurements of the processing speed are available
 - the exogenous disturbances w are unknown

Measurement- or learning-based optimization

- At regular time instances k
 - measure processing speeds
 - evaluate current assignments
 - assign next allocation

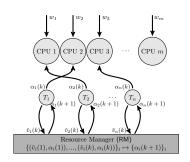


Example:

- \bigcirc measure \tilde{v}_i
- 2 compute $\tilde{f} = \sum_{i} \tilde{v}_{i}/n$
- 3 pick α^* that provided the maximum \tilde{f} so far.

Measurement- or learning-based optimization

- At regular time instances k
 - measure processing speeds
 - evaluate current assignments
 - assign next allocation

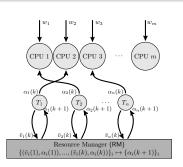


Issues:

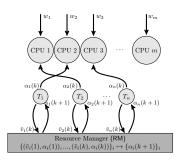
- computation complexity (mⁿ allocations)
- a testing period is necessary

Distributed learning optimization

- At regular time instances k, each thread
 - measures processing speed
 - evaluates current assignment
 - assigns next allocation



- At regular time instances k, each thread
 - measures processing speed
 - evaluates current assignment
 - assigns next allocation

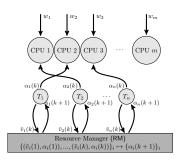


Advantages:

- reduces computational complexity
- allows for immediate response to performance variations
- allows for more direct exploration
- may guarantee global optimality (subject to design)

Distributed learning optimization

- At regular time instances k, each thread
 - measures processing speed
 - evaluates current assignment
 - assigns next allocation

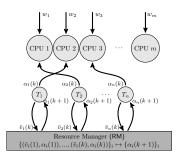


- Goal: design, for each thread,
 - 1 the performance function
 - the selection criterion

so that, *our original (global)* objective \tilde{f} is maximized.

Distributed Learning Automata for CPU pinning (PaRL-Sched)

- At regular time instances k, each thread
 - measures processing speed
 - creates strategies over CPU ass.
 - decides over the next assignment



- Game structure:
 - Load balancing game (in principle, potential game)
- **Implement:** Perturbed Learning Automata
 - Currently, local stability analysis

G. C. Chasparis and M. Rossbory, "Efficient Dynamic Pinning of Parallelized Applications by Distributed Reinforcement Learning," Int. J. Parallel Program., pp. 1-15, 2017. 4 D > 4 B > 4 B > 4 B >

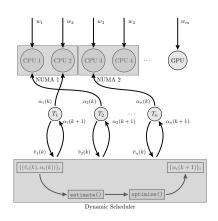
Distributed Learning for NUMA architectures

Issues/challenges:

- 1 nested/multi-layer resources (e.g., NUMA-CPU pairs)
- 2 additional degrees of optimization (e.g., due to memory affinities)

Contributions:

- 1 multi-layer resource allocation (i.e., distinguish NUMA from CPU placement)
- 2 multi-time-scale resource allocation (i.e., slower NUMA switching than CPU switching)
- 3 novel aspiration-based learning (for NUMA/memory placement)



G. C. Chasparis et al., "Learning-based Dynamic Pinning of Parallelized Applications in Many-Core Systems," Euromicro Conf. (PDP),

Setup:

- Linux platform (2 NUMA nodes x 14 CPU cores each)
- C++ POSIX thread library for parallelization
- PAPI.h for measurement collection
- numa.h policy library

Dynamic Scheduler: PaRL-sched

- Aspiration-based learning for NUMA placements (slow response)
- Reinforcement-based learning for CPU placements (fast response)
- Utility of each thread = processing speed

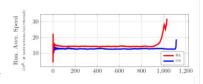
Parallelized Application:

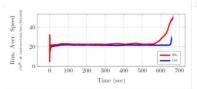
Ant-Colony Optimization

Non-uniform CPU availability

Learning-based Scheduler

- Under large interferences: completes up to 10% faster
- Under small interferences: matches OS completion time
- Always: achieves larger average speed / thread





Non-uniform CPU availability

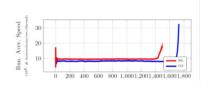
Learning-based Scheduler

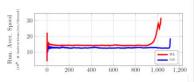
- Under large interferences: completes up to 10% faster
- Under small interferences: matches OS completion time
- Always: achieves larger average speed / thread

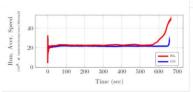
Note:

Larger Average Speed / Thread

⇒ Smaller Completion Time







Perturbed Learning Automata:

- perturbed learning automata for measurement-based optimization
- stochastic stability analysis in positive-utility games
- specialization in coordination games

Scheduling of Parallelized Applications:

- distributed learning framework for resource management in NUMA architectures
- increased average processing speed per thread in all experiments
- implies shorter completion times under large interferences

