### Georgios C. Chasparis

Department of Data Analysis Systems Software Competence Center Hagenberg GmbH, Austria

JKU

Linz, Austria May 3rd, 2019





# Outline

Centralized vs Decentralized Opt

2 Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications





### Outline

1 Centralized vs Decentralized Opt

2 Perturbed Learning Automata

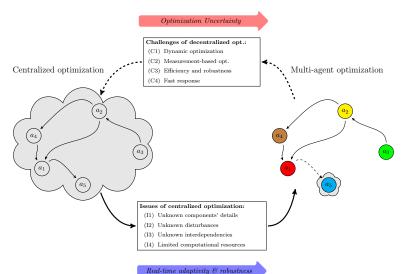
3 Stochastic Stability

4 Scheduling Parallelized Applications





# Centralized vs Decentralized Optimization

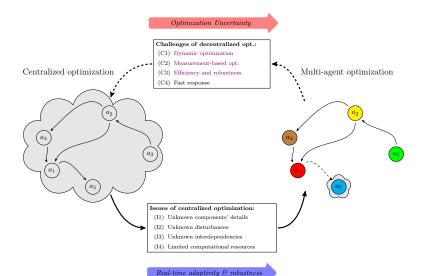






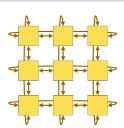


•00





- Why centralized opt. fails?
  - Unknown application details
  - Unknown disturbances
  - Limited computational resources



Parallel deployment



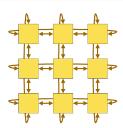
Adaptive Resource Allocation



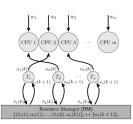


# Challenges (Resource-Aware Applications)

- Why centralized opt. fails?
  - Unknown application details
  - Unknown disturbances
  - Limited computational resources
- Instead: Measurement-based opt.
  - Performance indices may be unknown
  - Immediate reaction to performance drops
  - Reduced computational complexity



Parallel deployment



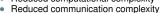
Adaptive Resource Allocation

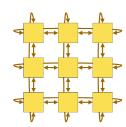




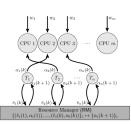
# Challenges (Resource-Aware Applications)

- Why centralized opt. fails?
  - Unknown application details
  - Unknown disturbances
  - Limited computational resources
- Instead: Measurement-based opt.
  - Performance indices may be unknown
  - Immediate reaction to performance drops
  - Reduced computational complexity
- + Distributed sensing/actuation
  - Localized disturbance rejection
  - Reduced computational complexity





Parallel deployment



Adaptive Resource Allocation





# Challenges (Resource-Aware Applications)

### Why centralized opt. fails?

- Unknown application details
- Unknown disturbances
- Limited computational resources

### Instead: Measurement-based opt.

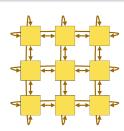
- Performance indices may be unknown
- Immediate reaction to performance drops
- Reduced computational complexity

### + Distributed sensing/actuation

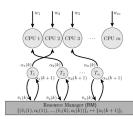
- Localized disturbance rejection
- Reduced computational complexity
- Reduced communication complexity

# Additional challenges:

- Optimization uncertainty
- Convergence speed



Parallel deployment



Adaptive Resource Allocation





- Additional (structural) assumptions:
  - "Alignment" of interests
- Challenges remain:
  - · distributed sensing/actuation
  - measurement-based learning
  - optimization uncertainty
  - convergence properties







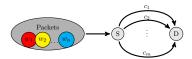
- Additional (structural) assumptions:
  - · "Alignment" of interests
- Challenges remain:
  - distributed sensing/actuation
  - measurement-based learning
  - optimization uncertainty
  - convergence properties





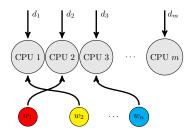


- Additional (structural) assumptions:
  - "Alignment" of interests
- Challenges remain:
  - distributed sensing/actuation
  - measurement-based learning
  - optimization uncertainty
  - convergence properties





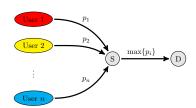
- Additional (structural) assumptions:
  - · "Alignment" of interests
- Challenges remain:
  - · distributed sensing/actuation
  - measurement-based learning
  - · optimization uncertainty
  - convergence properties







- Additional (structural) assumptions:
  - · "Alignment" of interests
- Challenges remain:
  - · distributed sensing/actuation
  - measurement-based learning
  - · optimization uncertainty
  - convergence properties





# Outline

1 Centralized vs Decentralized Op-

2 Perturbed Learning Automata

3 Stochastic Stability

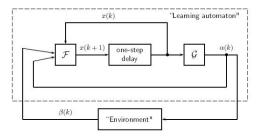
4 Scheduling Parallelized Applications





### • Learning Automata:

- Agents revise their decisions repeatedly
- Information is only local
  - · Agents observe only their own utility
- · Agents reinforce an action through
  - repeated selection
  - reward size
- Introduced/analyzed first by Tsetlin (1973)







# Strategic-form Games: Basic Notation/Terminology

Each agent i select actions based on the strategy

$$\sigma_{i} \triangleq \left(\begin{array}{c} \sigma_{i1} \\ \vdots \\ \sigma_{i|\mathcal{A}_{i}|} \end{array}\right) \in \Delta\left(|\mathcal{A}_{i}|\right)$$

Each agent *i* receives a *utility* (or *payoff*),

$$u_i: \mathcal{A} \to \mathbb{R}_+$$



# Strategic-form Games: Basic Notation/Terminology

Each agent i select actions based on the strategy

$$\sigma_{i} \triangleq \begin{pmatrix} \sigma_{i1} \\ \vdots \\ \sigma_{i|\mathcal{A}_{i}|} \end{pmatrix} \in \Delta\left(|\mathcal{A}_{i}|\right)$$

Each agent i receives a utility (or payoff),

$$u_i: \mathcal{A} \to \mathbb{R}_+$$

- Example:
  - 2 players, 2 actions
  - strategy: e.g.,  $\sigma_i = (0.2, 0.8)$
  - utility: e.g.,  $u_i(A, A) = 2$ .

|   | $\boldsymbol{A}$ | $\boldsymbol{B}$ |
|---|------------------|------------------|
| A | 2, 2             | 0, 0             |
| В | 0, 0             | 1, 1             |



# (Variable structure) Learning Automata

At each time period k = 0, 1, 2, ..., each agent i

**Action update:** Randomize using strategy  $x_i(k)$ ,

$$\alpha_i(k) = \operatorname{rand}_{x_i}[A_i]$$

**Performance Observation:** 

$$u_i = u_i(\alpha(k))$$

3 Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon(k) \cdot u_i(\alpha(k)) \cdot (e_{\alpha_i(k)} - x_i(k))$$





At some time k, agent i

**Action update:** Selects  $\alpha_i(k) = A$  based on strategy

$$x_i(k) = \left(\begin{array}{c} 0.2\\ 0.8 \end{array}\right)$$

Performance Observation:

$$u_i = u_i(A,A)=2$$

Strategy update:

$$\left(\begin{array}{c} 0.2 + 1.6\epsilon \\ 0.8 - 1.6\epsilon \end{array}\right) \leftarrow \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right) + \epsilon \cdot 2 \cdot \left[\left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right)\right]$$

Example:

$$\begin{array}{c|cc} & A & B \\ \hline A & 2,2 & 0,0 \\ \hline B & 0,0 & 1,1 \\ \end{array}$$





At some time k, agent i

**Action update:** Selects  $\alpha_i(k) = A$  based on strategy

$$x_i(k) = \left(\begin{array}{c} 0.2\\ 0.8 \end{array}\right)$$

Performance Observation:

$$u_i = u_i(A,A)=2$$

Strategy update:

$$\left(\begin{array}{c} 0.2 + 1.6\epsilon \\ 0.8 - 1.6\epsilon \end{array}\right) \leftarrow \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right) + \epsilon \cdot 2 \cdot \left[\left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \left(\begin{array}{c} 0.2 \\ 0.8 \end{array}\right)\right]$$

### Note:

- $x_i(k)$  increases in the direction of the selected action
- $x_i(k)$  increases *proportionally to* the observed performance





# Prior Schemes: Erev-Roth type dynamics

Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

Arthur (1993), Posch (1997) models:

$$\epsilon_i(k) \triangleq \frac{1}{ck^{\nu} + u_i(\alpha(k))}$$

Excluding convergence to non-Nash equilibria.



# *Prior Schemes:* Erev-Roth type dynamics

### Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

### Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

Arthur (1993), Posch (1997) models:

$$\epsilon_i(k) \triangleq \frac{1}{ck^{\nu} + u_i(\alpha(k))}$$

- Excluding convergence to non-Nash equilibria.
- Urn Process: [Hopkins & Posch (2005), Erev & Roth (1998)]

$$\epsilon_i(k) \triangleq \frac{1}{V_i(k) + u_i(\alpha(k))}$$

- Excluding convergence to non-Nash equilibria.
- Convergence to Nash equilibria only in 2-player partnership games





Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

Narendra & Thathachar (1989):

$$u_i(\alpha(k)) \in [0,1]$$

- Convergence to Nash equilibria only in identical interest games
- Extension to large games requires an absolute monotonocity condition.



### Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

### Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

Narendra & Thathachar (1989):

$$u_i(\alpha(k)) \in [0,1]$$

- Convergence to Nash equilibria only in identical interest games
- Extension to large games requires an absolute monotonocity condition.
- Verbeeck et al (2007):
  - Introduced a coordinated exploration phase
  - Convergence to efficient Nash equilibria





Action update:

$$\alpha_i(t) = \operatorname{rand}_{x_i(k)}[\mathcal{A}_i]$$

Strategy update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

Chasparis, Shamma & Rantzer (2014)

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

- excludes convergence to non-Nash equilibria
- guarantees global convergence to pure Nash equilibria in potential games
- global convergence in generic coordination games is *not* shown





$$\begin{array}{c|cccc}
A & B \\
\hline
2,2 & 0,0 \\
0,0 & 1,1
\end{array}$$

- equilibrium-selection mechanism
  - We can get convergence to desirable outcomes
  - Modified selection rules may be required
- measurement-based dynamics
  - Agents only observe performance measurements
- "handles" noisy observations
  - noise is filtered out through the strategy-vector formulation
  - demonstrated in the analysis of Hopkins and Posch (2005)





$$\begin{array}{c|cccc}
 & A & B \\
\hline
 A & 2,2 & 0,0 \\
\hline
 B & 0,0 & 1,1
\end{array}$$

#### Issues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.
- Lyapunov-based techniques are not appropriate for large games



$$\begin{array}{c|cccc}
 & A & B \\
\hline
 A & 2,2 & 0,0 \\
\hline
 B & 0,0 & 1,1
\end{array}$$

#### Issues

- global convergence to efficient outcomes is difficult to show.
- excluding convergence to mixed strategies.
- Lyapunov-based techniques are not appropriate for large games

#### Contributions

- a stochastic stability analysis for perturbed learning automata
- global convergence guarantees (circumvents issues of Lyapunov-based analysis)
- specialization to coordination games





# Outline

1 Centralized vs Decentralized Op

Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications





•000

# Stochastic Stability

### **Strategy Update:**

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

### Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

### Note:

Defines an induced Markov chain in:

$$\mathcal{Z} \doteq \mathcal{A} \times \Delta(n)$$

• Infinite dimensional with t.p.f.  $P_{\lambda}$ 

**Assumption:**  $u_i(\alpha) > 0$  for all i and  $\alpha \in \mathcal{A}$ .



G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control. 2018.

# Stochastic Stability

### **Strategy Update:**

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

•000

### Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

# Proposition

For  $\lambda = 0$ , the probability that eventually agents play the same action profile is 1

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. イロト イポト イラト イラト





# Stochastic Stability

### Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

•000

#### Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

# Proposition

For  $\lambda = 0$ , the probability that eventually agents play the same action profile is 1

### Remark

Reduce infinite dimensional  $P_{\lambda}$  to finite dimensional  $\pi$  (isomorphic with A).



G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. イロト イポト イラト イラト

### Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

### Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

### **Theorem**

There exists a unique probability vector  $\pi$  such that:

- 1  $\mu_{\lambda} \Rightarrow \sum_{\alpha \in A} \pi_{\alpha} \delta_{\alpha}(\cdot)$  as  $\lambda \downarrow 0$ ,
- $2\pi$  is an invariant distribution of the (finite-state) Markov chain  $\hat{P}$

$$\hat{P}_{\alpha\alpha'} \doteq \lim_{t \to \infty} QP^{t}(\alpha, \mathcal{N}_{\varepsilon}(\alpha')),$$

for any  $\varepsilon > 0$ , where Q is the t.p.f. of one player trembling.

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 P > 4 B > 4 B > -





# Stochastic Stability

### Strategy Update:

$$x_i(k+1) = x_i(k) + \epsilon_i(k) \cdot u_i(\alpha(k)) \cdot \left[ e_{\alpha_i(k)} - x_i(k) \right]$$

0000

### Action selection:

$$\sigma_i(k) = (1 - \lambda)x_i(k) + \lambda \mathbf{1}/n$$

### **Theorem**

There exists a unique probability vector  $\pi$  such that:

- 1  $\mu_{\lambda} \Rightarrow \sum_{\alpha \in A} \pi_{\alpha} \delta_{\alpha}(\cdot)$  as  $\lambda \downarrow 0$ ,
- $2\pi$  is an invariant distribution of the (finite-state) Markov chain  $\hat{P}$

$$\hat{P}_{\alpha\alpha'} \doteq \lim_{t \to \infty} QP^{t}(\alpha, \mathcal{N}_{\varepsilon}(\alpha')),$$

for any  $\varepsilon > 0$ , where Q is the t.p.f. of one player trembling.

Infinite dimensional 

Finite dimensional Markov chain

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 B > 4 B > 4 B >





# Lemma

For sufficiently small  $\epsilon > 0$ , the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant  $\eta(\delta)$ .



### Lemma

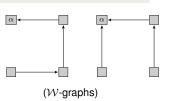
For sufficiently small  $\epsilon>0$ , the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant  $\eta(\delta)$ .

 $\delta$ -resistance:

$$\varphi_{\delta}(\alpha|g) \doteq \sum_{(\alpha^{(k)} \to \alpha^{(\ell)})} \frac{1}{\epsilon u_{j}(\alpha^{(\ell)})}$$



#### $\delta$ -resistance

### Lemma

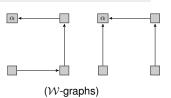
For sufficiently small  $\epsilon > 0$ , the one-step transition probabilities (of the finite approximation) satisfy:

$$\hat{P}_{\alpha\alpha'} = \gamma \lim_{\delta \downarrow 0} \exp\left(\frac{\eta(\delta)}{\epsilon u_j(\alpha')}\right)$$

for some negative constant  $\eta(\delta)$ .

 $\delta$ -resistance:

$$\varphi_{\delta}(\alpha|g) \doteq \sum_{(\alpha^{(k)} \to \alpha^{(\ell)})} \frac{1}{\epsilon u_j(\alpha^{(\ell)})}$$



### Theorem

As  $\epsilon \downarrow 0$ , the set of stochastically stable action profiles  $A^*$  is such that, for any  $\delta > 0$ ,

$$\max_{\alpha^* \in \mathcal{A}^*} \varphi_{\delta}^*(\alpha^*) < \min_{\alpha \in \mathcal{A} \setminus \mathcal{A}^*} \varphi_{\delta}^*(\alpha)$$

where  $\varphi_{\delta}^*$  denotes minimum resistance over all g.



## Specialization to Coordination Games

# Definition (Coordination games)

A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile  $\alpha$  and player i,  $u_j(\alpha'_i, \alpha_{-i}) \geq u_j(\alpha_i, \alpha_{-i})$  for any  $\alpha'_i \in BR_i(\alpha)$ .

G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control. 2018.





## Specialization to Coordination Games

# Definition (Coordination games)

A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile  $\alpha$  and player i,  $u_i(\alpha'_i, \alpha_{-i}) \geq u_i(\alpha_i, \alpha_{-i})$  for any  $\alpha'_i \in BR_i(\alpha)$ .

#### Theorem

In any coordination game, as  $\epsilon \downarrow 0$  and  $\lambda \downarrow 0$ ,

$$\mathcal{S}^*\subseteq\mathcal{S}_{NE}$$



G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018. 4 D > 4 B > 4 B > 4 B > ...

# Definition (Coordination games)

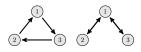
A strategic-form game satisfying the positive-utility property is a coordination game if, for every action profile  $\alpha$  and player i,  $u_j(\alpha'_i, \alpha_{-i}) \geq u_j(\alpha_i, \alpha_{-i})$  for any  $\alpha'_i \in BR_i(\alpha)$ .

#### Theorem

In any coordination game, as  $\epsilon \downarrow 0$  and  $\lambda \downarrow 0$ ,

$$\mathcal{S}^* \subseteq \mathcal{S}_{NE}$$

Example: Network Formation Games.



G. Chasparis, "Stochastic Stability Analysis of Perturbed Learning Automata in Positive-Utility Games," IEEE Transactions on Automatic Control, 2018.





# Contribution Snapshot

| Features/Conditions -          | Strong Convergence in Strategic-Form Games |            |                              |
|--------------------------------|--------------------------------------------|------------|------------------------------|
|                                | Reinforcement-based learning               | Q-learning | Aspiration-based<br>learning |
| (Structural) Assumptions:      |                                            |            |                              |
| 2 players                      | ✓                                          | <b>√</b>   | <b>√</b>                     |
| > 2 players                    | ✓                                          | 0          | ✓                            |
| Potential games                | ✓                                          | <b>√</b>   | <b>√</b>                     |
| Coordination games             | ✓                                          | 0          | <b>√</b>                     |
| Weakly-acyclic games           | 0                                          | 0          | ✓                            |
| Convergence to:                |                                            |            |                              |
| Nash equilibria                | ✓                                          | <b>√</b>   | <b>√</b>                     |
| (Pareto) Efficient Nash equil. | 0                                          | 0          | ✓                            |
| (Pareto) Efficient outcomes    | 0                                          | 0          | <b>√</b>                     |
| Additional features:           |                                            |            |                              |
| Noisy observations             | ✓                                          | ✓          | 0                            |
| Constant step-size             | ✓                                          | 0          | ✓                            |

### Aspiration-based learning:

- Benchmark-based learning (Marden, Young, Arslan, Shamma, 2009)
- Trial-and-error learning (Young, 2011)
- Mood-based learning (Marden, Young, Pao, 2014)
- Aspiration learning (Chasparis, Arapostathis, Shamma, 2013)





### Outline

1 Centralized vs Decentralized Op-

Perturbed Learning Automata

3 Stochastic Stability

4 Scheduling Parallelized Applications





### Scheduling for Parallel Applications

#### Questions: how to?

- map components/threads and data to the available computing resources
- dvnamically reschedule and migrate components and data between resources

#### Prior work:

- Static mapping approaches:
  - make decisions prior to execution
  - involve memory-aware scheduling techniques [Markatos & LeBlanc '91]
  - involve optimization for near-optimal instantiation [Brown et al '14]
- Dynamic mapping approaches:
  - make decisions during runtime
  - involve exhaustive-search type algorithms for best bindings [Klug et al '11]
  - involve scheduling hints about affinity issues [Broquedis et al '10. Olivier et al '11]

#### Criticism:

- computational complexity
- failure to consider irregular application behavior
- failure to exploit feedback information from the application





#### Framework

## Setup

- n threads result from a parallelized application
- each thread needs to be executed on a NUMA/CPU node

# Resource Manager: Assumptions

- application's details are not known
- threads may not be idled or postponed
- each thread may be assigned only to a single CPU

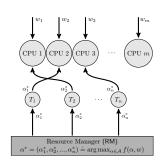




Centralized (for all threads) objective:

$$\max_{\alpha \in \mathcal{A}} f(\alpha, w)$$

- A: set of allocations
- w: external disturbances



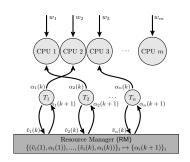
- Example: average processing speed
- Issues:
  - only measurements of the processing speed are available
  - the exogenous disturbances w are unknown





# Measurement- or learning-based optimization

- At regular time instances k
  - measure processing speeds
  - evaluate current assignments
  - assign next allocation



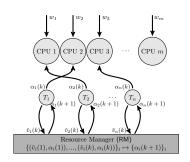
### Example:

- $\bigcirc$  measure  $\tilde{v}_i$
- 2 compute  $\tilde{f} = \sum_{i} \tilde{v}_{i}/n$
- 3 pick  $\alpha^*$  that provided the maximum  $\tilde{f}$  so far.



## Measurement- or learning-based optimization

- At regular time instances k
  - measure processing speeds
  - evaluate current assignments
  - assign next allocation



#### Issues:

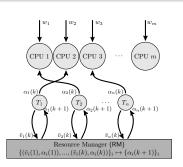
- computation complexity (m<sup>n</sup> allocations)
- a testing period is necessary



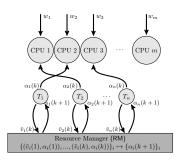


## **Distributed** learning optimization

- At regular time instances k, each thread
  - measures processing speed
  - evaluates current assignment
  - assigns next allocation



- At regular time instances k, each thread
  - measures processing speed
  - evaluates current assignment
  - assigns next allocation



### Advantages:

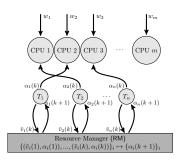
- reduces computational complexity
- allows for immediate response to performance variations
- allows for more direct exploration
- may guarantee global optimality (subject to design)





## **Distributed** learning optimization

- At regular time instances k, each thread
  - measures processing speed
  - evaluates current assignment
  - assigns next allocation



- Goal: design, for each thread,
  - 1 the performance function
  - the selection criterion

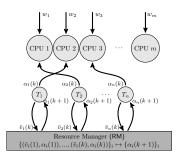
so that, *our original (global)* objective  $\tilde{f}$  is maximized.





# Distributed Learning Automata for CPU pinning (PaRL-Sched)

- At regular time instances k, each thread
  - measures processing speed
  - creates strategies over CPU ass.
  - decides over the next assignment



- Game structure:
  - Load balancing game (in principle, potential game)
- **Implement:** Perturbed Learning Automata
  - Currently, local stability analysis



G. C. Chasparis and M. Rossbory, "Efficient Dynamic Pinning of Parallelized Applications by Distributed Reinforcement Learning," Int. J. Parallel Program., pp. 1-15, 2017. 4 D > 4 B > 4 B > 4 B >

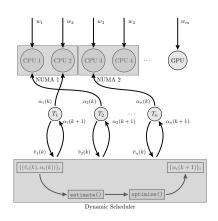
## Distributed Learning for NUMA architectures

#### Issues/challenges:

- 1 nested/multi-layer resources (e.g., NUMA-CPU pairs)
- 2 additional degrees of optimization (e.g., due to memory affinities)

#### Contributions:

- 1 multi-layer resource allocation (i.e., distinguish NUMA from CPU placement)
- 2 multi-time-scale resource allocation (i.e., slower NUMA switching than CPU switching)
- 3 novel aspiration-based learning (for NUMA/memory placement)





G. C. Chasparis et al., "Learning-based Dynamic Pinning of Parallelized Applications in Many-Core Systems," Euromicro Conf. (PDP),

#### Setup:

- Linux platform (2 NUMA nodes x 14 CPU cores each)
- C++ POSIX thread library for parallelization
- PAPI.h for measurement collection
- numa.h policy library

#### Dynamic Scheduler: PaRL-sched

- Aspiration-based learning for NUMA placements (slow response)
- Reinforcement-based learning for CPU placements (fast response)
- Utility of each thread = processing speed

### Parallelized Application:

Ant-Colony Optimization

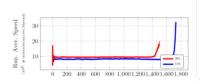


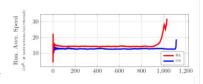


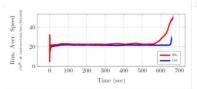
# Non-uniform CPU availability

### Learning-based Scheduler

- Under large interferences: completes up to 10% faster
- Under small interferences: matches OS completion time
- Always: achieves larger average speed / thread











# Non-uniform CPU availability

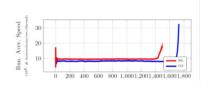
#### Learning-based Scheduler

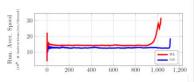
- Under large interferences: completes up to 10% faster
- Under small interferences: matches OS completion time
- Always: achieves larger average speed / thread

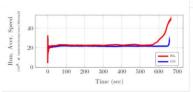
#### Note:

Larger Average Speed / Thread

⇒ Smaller Completion Time











#### Perturbed Learning Automata:

- perturbed learning automata for measurement-based optimization
- stochastic stability analysis in positive-utility games
- specialization in coordination games

#### Scheduling of Parallelized Applications:

- distributed learning framework for resource management in NUMA architectures
- increased average processing speed per thread in all experiments
- implies shorter completion times under large interferences



