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Demand Response in Residential Buildings

* Recently, we observe
- A constant increase in the number of battery storage systems.
- A need for larger absorption rates of renewable energy

* We need:

- to incentivize users to provide “flexibility”
- to effectively coordinate flexibility extraction
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o Commitment-based approaches

(e.g., Ruiz et al (2009), Chen et al. (2014))

- The users commit to reduce load during peak-hours
- The operator distributes the desired aggregated demand to the users

DR Framework in BGs through Battery-Storage Control

=] =)
G. Chasparis et al. (SCCH)



Introduction
000000

Demand-Response Approaches

o Commitment-based approaches

- The users commit to reduce load during peak-hours
- The operator distributes the desired aggregated demand to the users
(e.g., Ruiz et al (2009), Chen et al. (2014))

¢ Incentive-based approaches:

- The users provide preferences over availability and cost functions
- The operator computes optimal flexibility extraction that minimize cost
(e.g., Herter (2007), Triki & Violi (2009), Xu et al (2016))
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Demand-Response Approaches

o Commitment-based approaches

- The users commit to reduce load during peak-hours
- The operator distributes the desired aggregated demand to the users
(e.g., Ruiz et al (2009), Chen et al. (2014))

¢ Incentive-based approaches:

- The users provide preferences over availability and cost functions
- The operator computes optimal flexibility extraction that minimize cost
(e.g., Herter (2007), Triki & Violi (2009), Xu et al (2016))

e Combination of the two (demand-response aggregation)

- The operator directly extracts flexibility when necessary
- Inreturn, the operator offers to the owners a compensation
(e.g., Parvania et al (2013), Iria et al (2017), Nan et al (2018))
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Demand-Response Aggregation: Requirements & Objective

o Features/requirements: [ ]

o optimizing flexibility extraction
o optimizing over a future time horizon
» optimizing over multiple households

2

e Objective
» Respond to load reduction/increase goals

)
%

o Participate in a wholesale electricity
spot-market (e.g., Day-ahead, Intra-day)
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Demand-Response Aggregation: State-of-the-art & Challenges

e So far, analysis

e is primarily restricted to single households
(e.g., Mohsenian-Rad (2016), He et al (2016), Jiang & Power (2016))

—J

e includes detailed modeling of the battery and

cycle costs
(e.g., He et al (2016))

» has taken into account uncertainty and
imperfect forecasts

)

(e.g., Jiang & Power (2016)) 1 E S

e Challenges,

e computationally efficient methods for a |_I'I_|
coordinated response of a pool of
battery-storage systems

m

e dynamic-programming scheduling problem
with equilibrium constraints
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Setup and Goal of this paper

o Austrian market organization

e balance-group (BG) organization
o every prosumer is part of a BG

Summary & Futur

o feed-in and off-take are clearedin 15min [

—

o Incentives for strategic behavior
(O1) Market participation: The BG may exchange

electricity in a spot-market

(02) Imbalance optimization: Reduce current
imbalances to zero, or generate imbalances

e Goal of this paper:

o formalize these two (instantaneous)
optimization problems

» provide building blocks for a large scale
dynamic optimization
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Charging Potential
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Discharging Potential
Energy potential or flexibility of a household i, for a time interval AT, is defined as the
amount of energy that can be “charged” to or “discharged” from the household.
e Charging (power) potential:

Ve,i(t) = Pgi(t) — Pg,i(r) 2 0
e P, (1) : maximum (positive) power from the grid

e P, (1) : power from the grid under baseline operation
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Discharging Potential
Energy potential or flexibility of a household i, for a time interval AT, is defined as the
amount of energy that can be “charged” to or “discharged” from the household.
e Discharging (power) potential:

Va,i(t) = Pg,i(t) = Pg,i(t) <0
e P, (1) : maximum (negative) power to the grid

e P, (1) : power from the grid under normal operation
DR Framework in BGs through Battery-Storage Control
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Discharging Potential
Energy potential or flexibility of a household i, for a time interval AT, is defined as the
amount of energy that can be “charged” to or “discharged” from the household.

(energy) potential is:

o Example: When the battery is currently charging with rate c;(z) > 0, the charging

maximum charging energy

Ve,i(t) = Cmax,i min{AT*’,—(t), AT} —¢i(r) - min{ AT, ;(r), AT}
DR Framework in BGs through Battery-Storage Control
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Opportunity Costs
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Opportunity Costs

Independently of the way that the BRP is currently utilizing the battery, the opportunity
costs of activation can be defined as follows:

Cact,i(Pg (1)) = Uase,i (1) — Usrp,i(Pg (1))
N —’ N———
optimal baseline operation BRP intervention
under the selected by the BRP power exchange with the grid.
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What would have been the revenue when the user maximizes its own utility:

UI):ase,i(t) = LTS Ubase,i(Pg,i)
Pg,i€[Pg,i:Pyg,i]

where
* . .
Ubase,i(sz l) = Ue.sell,i(Pg,i) + Ub.store,i(Pg,i)_
Ce.buy,i(Pg,i) - Cb.loss,i(Pg,i) - Cb.wea.r,i(t)(Pg,i)~
U (=1 = = DA
DR Framework in BGs through Battery-Storage Control G. Chasparis et al. (SCCH) 16



Activation Costs
[ 1]

lE(t)

Aggregator / BGR
A<
ar A

A

What is the revenue of the household when the BRP intervenes:
UBRP,i(P;,i) = Ue.sell,i(P_;,i) + Ub.slore,i(P;,i)_

Ce‘buy,i(P;,i)) - Cb‘loss,i(P;)i) - Cb‘wear,i(P‘lg,i)a
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Generic Activation Costs
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Generic Activation Costs

The user submits a linear activation curve that values its own preferences over the use
of the battery. For example, when the BRP wants to establish a positive imbalance:

Cact,i(t) = ai(t) . Vc,i(t) : ﬁé‘,i(l)

under the selected by the BRP power exchange with the grid, for some positive
constant 3;(¢) and activation parameter «;(¢) € [0, 1].
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We need to compute the optimal subset of participants and their schedules to generate
a specific commitment E(¢) > 0 at time interval 1. In the case of generic costs,
min

z.(t)Ta
st Ve(®)Ta=E(r)
var. ae 0,1V

DR Framework in BGs through Battery-Storage Control

=] =)
G. Chasparis et al. (SCCH)

20



Intr n Energy Potential Activation Costs Centralized Optimal Activation Summary & Future
6 6 (o] ¢}

Market Participation Optimization (cont.)

Optimal activation for E(z) > 0

1: procedure OPTIMALACTIVATION(V, z¢, E(t))
2: order participants i = 1,2, ..., N as follows

/Bc,l S /30,2 S S /Bc,N

33 fori=1,2,...,Ndo

4: if i < k* then

B af =1

6: else

7: ifi = k* + 1 then

8: of = (E() = SiZ} Vey) /Ve
9: else

10: af =0

11: return a*
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1ABG (t)>0

imbalance, say Agg > 0

min

var.

—zd(t)Ta + Aimb(t) (AB(}(t) + Vd,i(t)Ta)
ac[o, 1]V

We need to compute the optimal subset of participants to minimize a current
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Summary

Summary:

o We described a framework for activation optimization in balance groups.
o Essential building blocks:

* energy potential calculation
o opportunity/activation costs

e Recall: This is an optimization that applies to single interval AT.

Future Work:

o Day-ahead optimization for spot-market participation
e Upcoming paper in DACH+ Energy Informatics 2019
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Snap-shot of Day-ahead Optimization

Optimal commitment under perfect forecasts
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